Cycle Pixel Difference Network for Crisp Edge Detection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.04272
Edge detection, as a fundamental task in computer vision, has garnered increasing attention. The advent of deep learning has significantly advanced this field. However, recent deep learning-based methods generally face two significant issues: 1) reliance on large-scale pre-trained weights, and 2) generation of thick edges. We construct a U-shape encoder-decoder model named CPD-Net that successfully addresses these two issues simultaneously. In response to issue 1), we propose a novel cycle pixel difference convolution (CPDC), which effectively integrates edge prior knowledge with modern convolution operations, consequently successfully eliminating the dependence on large-scale pre-trained weights. As for issue 2), we construct a multi-scale information enhancement module (MSEM) and a dual residual connection-based (DRC) decoder to enhance the edge location ability of the model, thereby generating crisp and clean contour maps. Comprehensive experiments conducted on four standard benchmarks demonstrate that our method achieves competitive performance on the BSDS500 dataset (ODS=0.813 and AC=0.352), NYUD-V2 (ODS=0.760 and AC=0.223), BIPED dataset (ODS=0.898 and AC=0.426), and CID (ODS=0.59). Our approach provides a novel perspective for addressing these challenges in edge detection.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.04272
- https://arxiv.org/pdf/2409.04272
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403587613
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403587613Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.04272Digital Object Identifier
- Title
-
Cycle Pixel Difference Network for Crisp Edge DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-06Full publication date if available
- Authors
-
Changsong Liu, Wei Zhang, Yanyan Liu, Mingyang Li, Wenlin Li, Yimeng Fan, Xiwei Bai, Liang ZhangdList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.04272Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.04272Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.04272Direct OA link when available
- Concepts
-
Enhanced Data Rates for GSM Evolution, Pixel, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403587613 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.04272 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.04272 |
| ids.openalex | https://openalex.org/W4403587613 |
| fwci | |
| type | preprint |
| title | Cycle Pixel Difference Network for Crisp Edge Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.5134000182151794 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C162307627 |
| concepts[0].level | 2 |
| concepts[0].score | 0.610342800617218 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[0].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[1].id | https://openalex.org/C160633673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5635543465614319 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[1].display_name | Pixel |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4918205738067627 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3840292692184448 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[0].score | 0.610342800617218 |
| keywords[0].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[1].id | https://openalex.org/keywords/pixel |
| keywords[1].score | 0.5635543465614319 |
| keywords[1].display_name | Pixel |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4918205738067627 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3840292692184448 |
| keywords[3].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.04272 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.04272 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.04272 |
| locations[1].id | doi:10.48550/arxiv.2409.04272 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.04272 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101489952 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1387-7499 |
| authorships[0].author.display_name | Changsong Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Changsong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057842914 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8415-1062 |
| authorships[1].author.display_name | Wei Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Wei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5115595435 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2821-9253 |
| authorships[2].author.display_name | Yanyan Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Yanyan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5115588515 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-0078-8389 |
| authorships[3].author.display_name | Mingyang Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Mingyang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101535494 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2032-0530 |
| authorships[4].author.display_name | Wenlin Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Wenlin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100311024 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yimeng Fan |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fan, Yimeng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5055217506 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9659-3570 |
| authorships[6].author.display_name | Xiwei Bai |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Bai, Xiangnan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5114341702 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Liang Zhangd |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Zhangd, Liang |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.04272 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Cycle Pixel Difference Network for Crisp Edge Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.5134000182151794 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2067272521 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.04272 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.04272 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.04272 |
| primary_location.id | pmh:oai:arXiv.org:2409.04272 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.04272 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.04272 |
| publication_date | 2024-09-06 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 47, 67, 99, 106, 164 |
| abstract_inverted_index.1) | 33 |
| abstract_inverted_index.2) | 40 |
| abstract_inverted_index.As | 93 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.We | 45 |
| abstract_inverted_index.as | 2 |
| abstract_inverted_index.in | 6, 171 |
| abstract_inverted_index.of | 15, 42, 118 |
| abstract_inverted_index.on | 35, 89, 131, 142 |
| abstract_inverted_index.to | 62, 112 |
| abstract_inverted_index.we | 65, 97 |
| abstract_inverted_index.1), | 64 |
| abstract_inverted_index.2), | 96 |
| abstract_inverted_index.CID | 159 |
| abstract_inverted_index.Our | 161 |
| abstract_inverted_index.The | 13 |
| abstract_inverted_index.and | 39, 105, 124, 147, 151, 156, 158 |
| abstract_inverted_index.for | 94, 167 |
| abstract_inverted_index.has | 9, 18 |
| abstract_inverted_index.our | 137 |
| abstract_inverted_index.the | 87, 114, 119, 143 |
| abstract_inverted_index.two | 30, 57 |
| abstract_inverted_index.Edge | 0 |
| abstract_inverted_index.deep | 16, 25 |
| abstract_inverted_index.dual | 107 |
| abstract_inverted_index.edge | 77, 115, 172 |
| abstract_inverted_index.face | 29 |
| abstract_inverted_index.four | 132 |
| abstract_inverted_index.task | 5 |
| abstract_inverted_index.that | 53, 136 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.with | 80 |
| abstract_inverted_index.(DRC) | 110 |
| abstract_inverted_index.BIPED | 153 |
| abstract_inverted_index.clean | 125 |
| abstract_inverted_index.crisp | 123 |
| abstract_inverted_index.cycle | 69 |
| abstract_inverted_index.issue | 63, 95 |
| abstract_inverted_index.maps. | 127 |
| abstract_inverted_index.model | 50 |
| abstract_inverted_index.named | 51 |
| abstract_inverted_index.novel | 68, 165 |
| abstract_inverted_index.pixel | 70 |
| abstract_inverted_index.prior | 78 |
| abstract_inverted_index.these | 56, 169 |
| abstract_inverted_index.thick | 43 |
| abstract_inverted_index.which | 74 |
| abstract_inverted_index.(MSEM) | 104 |
| abstract_inverted_index.advent | 14 |
| abstract_inverted_index.edges. | 44 |
| abstract_inverted_index.field. | 22 |
| abstract_inverted_index.issues | 58 |
| abstract_inverted_index.method | 138 |
| abstract_inverted_index.model, | 120 |
| abstract_inverted_index.modern | 81 |
| abstract_inverted_index.module | 103 |
| abstract_inverted_index.recent | 24 |
| abstract_inverted_index.(CPDC), | 73 |
| abstract_inverted_index.BSDS500 | 144 |
| abstract_inverted_index.CPD-Net | 52 |
| abstract_inverted_index.NYUD-V2 | 149 |
| abstract_inverted_index.U-shape | 48 |
| abstract_inverted_index.ability | 117 |
| abstract_inverted_index.contour | 126 |
| abstract_inverted_index.dataset | 145, 154 |
| abstract_inverted_index.decoder | 111 |
| abstract_inverted_index.enhance | 113 |
| abstract_inverted_index.issues: | 32 |
| abstract_inverted_index.methods | 27 |
| abstract_inverted_index.propose | 66 |
| abstract_inverted_index.thereby | 121 |
| abstract_inverted_index.vision, | 8 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.achieves | 139 |
| abstract_inverted_index.advanced | 20 |
| abstract_inverted_index.approach | 162 |
| abstract_inverted_index.computer | 7 |
| abstract_inverted_index.garnered | 10 |
| abstract_inverted_index.learning | 17 |
| abstract_inverted_index.location | 116 |
| abstract_inverted_index.provides | 163 |
| abstract_inverted_index.reliance | 34 |
| abstract_inverted_index.residual | 108 |
| abstract_inverted_index.response | 61 |
| abstract_inverted_index.standard | 133 |
| abstract_inverted_index.weights, | 38 |
| abstract_inverted_index.weights. | 92 |
| abstract_inverted_index.addresses | 55 |
| abstract_inverted_index.conducted | 130 |
| abstract_inverted_index.construct | 46, 98 |
| abstract_inverted_index.generally | 28 |
| abstract_inverted_index.knowledge | 79 |
| abstract_inverted_index.(ODS=0.760 | 150 |
| abstract_inverted_index.(ODS=0.813 | 146 |
| abstract_inverted_index.(ODS=0.898 | 155 |
| abstract_inverted_index.AC=0.223), | 152 |
| abstract_inverted_index.AC=0.352), | 148 |
| abstract_inverted_index.AC=0.426), | 157 |
| abstract_inverted_index.addressing | 168 |
| abstract_inverted_index.attention. | 12 |
| abstract_inverted_index.benchmarks | 134 |
| abstract_inverted_index.challenges | 170 |
| abstract_inverted_index.dependence | 88 |
| abstract_inverted_index.detection, | 1 |
| abstract_inverted_index.detection. | 173 |
| abstract_inverted_index.difference | 71 |
| abstract_inverted_index.generating | 122 |
| abstract_inverted_index.generation | 41 |
| abstract_inverted_index.increasing | 11 |
| abstract_inverted_index.integrates | 76 |
| abstract_inverted_index.(ODS=0.59). | 160 |
| abstract_inverted_index.competitive | 140 |
| abstract_inverted_index.convolution | 72, 82 |
| abstract_inverted_index.demonstrate | 135 |
| abstract_inverted_index.effectively | 75 |
| abstract_inverted_index.eliminating | 86 |
| abstract_inverted_index.enhancement | 102 |
| abstract_inverted_index.experiments | 129 |
| abstract_inverted_index.fundamental | 4 |
| abstract_inverted_index.information | 101 |
| abstract_inverted_index.large-scale | 36, 90 |
| abstract_inverted_index.multi-scale | 100 |
| abstract_inverted_index.operations, | 83 |
| abstract_inverted_index.performance | 141 |
| abstract_inverted_index.perspective | 166 |
| abstract_inverted_index.pre-trained | 37, 91 |
| abstract_inverted_index.significant | 31 |
| abstract_inverted_index.consequently | 84 |
| abstract_inverted_index.successfully | 54, 85 |
| abstract_inverted_index.Comprehensive | 128 |
| abstract_inverted_index.significantly | 19 |
| abstract_inverted_index.learning-based | 26 |
| abstract_inverted_index.encoder-decoder | 49 |
| abstract_inverted_index.simultaneously. | 59 |
| abstract_inverted_index.connection-based | 109 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |