Cycles as edge intersection hypergraphs Article Swipe
Related Concepts
Hypergraph
Combinatorics
Intersection (aeronautics)
Wedge (geometry)
Mathematics
Enhanced Data Rates for GSM Evolution
Physics
Geometry
Computer science
Geography
Cartography
Telecommunications
Martin Sonntag
,
Hanns‐Martin Teichert
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1902.00396
· OA: W2914311060
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1902.00396
· OA: W2914311060
If ${\cal H}=(V,{\cal E})$ is a hypergraph, its edge intersection hypergraph $EI({\cal H})=(V,{\cal E}^{EI})$ has the edge set ${\cal E}^{EI}=\{e_1 \cap e_2 \ |\ e_1, e_2 \in {\cal E} \ \wedge \ e_1 \neq e_2 \ \wedge \ |e_1 \cap e_2 |\geq2\}$. Picking up a problem from arXiv:1901.06292, for $n \ge 24$ we prove that there is a 3-regular (and - if $n$ is even - 6-uniform) hypergraph ${\cal H}=(V,{\cal E})$ with $\lceil \frac{n}{2} \rceil$ hyperedges and $EI({\cal H}) = C_n$.
Related Topics
Finding more related topics…