D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.02604
Large vision language models (VLMs) have progressed incredibly from research to applicability for general-purpose use cases. LLaVA-Med, a pioneering large language and vision assistant for biomedicine, can perform multi-modal biomedical image and data analysis to provide a natural language interface for radiologists. While it is highly generalizable and works with multi-modal data, it is currently limited by well-known challenges that exist in the large language model space. Hallucinations and imprecision in responses can lead to misdiagnosis which currently hinder the clinical adaptability of VLMs. To create precise, user-friendly models in healthcare, we propose D-Rax -- a domain-specific, conversational, radiologic assistance tool that can be used to gain insights about a particular radiologic image. In this study, we enhance the conversational analysis of chest X-ray (CXR) images to support radiological reporting, offering comprehensive insights from medical imaging and aiding in the formulation of accurate diagnosis. D-Rax is achieved by fine-tuning the LLaVA-Med architecture on our curated enhanced instruction-following data, comprising of images, instructions, as well as disease diagnosis and demographic predictions derived from MIMIC-CXR imaging data, CXR-related visual question answer (VQA) pairs, and predictive outcomes from multiple expert AI models. We observe statistically significant improvement in responses when evaluated for both open and close-ended conversations. Leveraging the power of state-of-the-art diagnostic models combined with VLMs, D-Rax empowers clinicians to interact with medical images using natural language, which could potentially streamline their decision-making process, enhance diagnostic accuracy, and conserve their time.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.02604
- https://arxiv.org/pdf/2407.02604
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400375571
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400375571Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.02604Digital Object Identifier
- Title
-
D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-02Full publication date if available
- Authors
-
Hareem Nisar, Syed Muhammad Anwar, Zhifan Jiang, Abhijeet Parida, Vishwesh Nath, Holger R. Roth, Marius George LinguraruList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.02604Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.02604Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.02604Direct OA link when available
- Concepts
-
Domain (mathematical analysis), Modal, Computer science, Artificial intelligence, Mathematics, Materials science, Mathematical analysis, Polymer chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400375571 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.02604 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.02604 |
| ids.openalex | https://openalex.org/W4400375571 |
| fwci | |
| type | preprint |
| title | D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9868000149726868 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.986299991607666 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T11636 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9624000191688538 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2718 |
| topics[2].subfield.display_name | Health Informatics |
| topics[2].display_name | Artificial Intelligence in Healthcare and Education |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C36503486 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6559111475944519 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[0].display_name | Domain (mathematical analysis) |
| concepts[1].id | https://openalex.org/C71139939 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6274417042732239 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[1].display_name | Modal |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.531351625919342 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.40139034390449524 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.138773113489151 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C192562407 |
| concepts[5].level | 0 |
| concepts[5].score | 0.11426547169685364 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[5].display_name | Materials science |
| concepts[6].id | https://openalex.org/C134306372 |
| concepts[6].level | 1 |
| concepts[6].score | 0.05623692274093628 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[6].display_name | Mathematical analysis |
| concepts[7].id | https://openalex.org/C188027245 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[7].display_name | Polymer chemistry |
| keywords[0].id | https://openalex.org/keywords/domain |
| keywords[0].score | 0.6559111475944519 |
| keywords[0].display_name | Domain (mathematical analysis) |
| keywords[1].id | https://openalex.org/keywords/modal |
| keywords[1].score | 0.6274417042732239 |
| keywords[1].display_name | Modal |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.531351625919342 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.40139034390449524 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.138773113489151 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/materials-science |
| keywords[5].score | 0.11426547169685364 |
| keywords[5].display_name | Materials science |
| keywords[6].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[6].score | 0.05623692274093628 |
| keywords[6].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.02604 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.02604 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.02604 |
| locations[1].id | doi:10.48550/arxiv.2407.02604 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.02604 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5075170074 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5058-4214 |
| authorships[0].author.display_name | Hareem Nisar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Nisar, Hareem |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5073762312 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Syed Muhammad Anwar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Anwar, Syed Muhammad |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5068633300 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5713-1675 |
| authorships[2].author.display_name | Zhifan Jiang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiang, Zhifan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5089319608 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4978-0576 |
| authorships[3].author.display_name | Abhijeet Parida |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Parida, Abhijeet |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5042877366 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6840-6205 |
| authorships[4].author.display_name | Vishwesh Nath |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nath, Vishwesh |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5043710204 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3662-8743 |
| authorships[5].author.display_name | Holger R. Roth |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Roth, Holger R. |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5085732379 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6175-8665 |
| authorships[6].author.display_name | Marius George Linguraru |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Linguraru, Marius George |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.02604 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-07-06T00:00:00 |
| display_name | D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9868000149726868 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052, https://openalex.org/W2382290278, https://openalex.org/W4395014643 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.02604 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.02604 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.02604 |
| primary_location.id | pmh:oai:arXiv.org:2407.02604 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.02604 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.02604 |
| publication_date | 2024-07-02 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 17, 36, 95, 109 |
| abstract_inverted_index.-- | 94 |
| abstract_inverted_index.AI | 187 |
| abstract_inverted_index.In | 113 |
| abstract_inverted_index.To | 84 |
| abstract_inverted_index.We | 189 |
| abstract_inverted_index.as | 162, 164 |
| abstract_inverted_index.be | 103 |
| abstract_inverted_index.by | 56, 147 |
| abstract_inverted_index.in | 61, 70, 89, 138, 194 |
| abstract_inverted_index.is | 44, 53, 145 |
| abstract_inverted_index.it | 43, 52 |
| abstract_inverted_index.of | 82, 121, 141, 159, 207 |
| abstract_inverted_index.on | 152 |
| abstract_inverted_index.to | 10, 34, 74, 105, 126, 217 |
| abstract_inverted_index.we | 91, 116 |
| abstract_inverted_index.and | 21, 31, 47, 68, 136, 167, 181, 201, 235 |
| abstract_inverted_index.can | 26, 72, 102 |
| abstract_inverted_index.for | 12, 24, 40, 198 |
| abstract_inverted_index.our | 153 |
| abstract_inverted_index.the | 62, 79, 118, 139, 149, 205 |
| abstract_inverted_index.use | 14 |
| abstract_inverted_index.both | 199 |
| abstract_inverted_index.data | 32 |
| abstract_inverted_index.from | 8, 133, 171, 184 |
| abstract_inverted_index.gain | 106 |
| abstract_inverted_index.have | 5 |
| abstract_inverted_index.lead | 73 |
| abstract_inverted_index.open | 200 |
| abstract_inverted_index.that | 59, 101 |
| abstract_inverted_index.this | 114 |
| abstract_inverted_index.tool | 100 |
| abstract_inverted_index.used | 104 |
| abstract_inverted_index.well | 163 |
| abstract_inverted_index.when | 196 |
| abstract_inverted_index.with | 49, 212, 219 |
| abstract_inverted_index.(CXR) | 124 |
| abstract_inverted_index.(VQA) | 179 |
| abstract_inverted_index.D-Rax | 93, 144, 214 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.VLMs, | 213 |
| abstract_inverted_index.VLMs. | 83 |
| abstract_inverted_index.While | 42 |
| abstract_inverted_index.X-ray | 123 |
| abstract_inverted_index.about | 108 |
| abstract_inverted_index.chest | 122 |
| abstract_inverted_index.could | 226 |
| abstract_inverted_index.data, | 51, 157, 174 |
| abstract_inverted_index.exist | 60 |
| abstract_inverted_index.image | 30 |
| abstract_inverted_index.large | 19, 63 |
| abstract_inverted_index.model | 65 |
| abstract_inverted_index.power | 206 |
| abstract_inverted_index.their | 229, 237 |
| abstract_inverted_index.time. | 238 |
| abstract_inverted_index.using | 222 |
| abstract_inverted_index.which | 76, 225 |
| abstract_inverted_index.works | 48 |
| abstract_inverted_index.(VLMs) | 4 |
| abstract_inverted_index.aiding | 137 |
| abstract_inverted_index.answer | 178 |
| abstract_inverted_index.cases. | 15 |
| abstract_inverted_index.create | 85 |
| abstract_inverted_index.expert | 186 |
| abstract_inverted_index.highly | 45 |
| abstract_inverted_index.hinder | 78 |
| abstract_inverted_index.image. | 112 |
| abstract_inverted_index.images | 125, 221 |
| abstract_inverted_index.models | 3, 88, 210 |
| abstract_inverted_index.pairs, | 180 |
| abstract_inverted_index.space. | 66 |
| abstract_inverted_index.study, | 115 |
| abstract_inverted_index.vision | 1, 22 |
| abstract_inverted_index.visual | 176 |
| abstract_inverted_index.curated | 154 |
| abstract_inverted_index.derived | 170 |
| abstract_inverted_index.disease | 165 |
| abstract_inverted_index.enhance | 117, 232 |
| abstract_inverted_index.images, | 160 |
| abstract_inverted_index.imaging | 135, 173 |
| abstract_inverted_index.limited | 55 |
| abstract_inverted_index.medical | 134, 220 |
| abstract_inverted_index.models. | 188 |
| abstract_inverted_index.natural | 37, 223 |
| abstract_inverted_index.observe | 190 |
| abstract_inverted_index.perform | 27 |
| abstract_inverted_index.propose | 92 |
| abstract_inverted_index.provide | 35 |
| abstract_inverted_index.support | 127 |
| abstract_inverted_index.accurate | 142 |
| abstract_inverted_index.achieved | 146 |
| abstract_inverted_index.analysis | 33, 120 |
| abstract_inverted_index.clinical | 80 |
| abstract_inverted_index.combined | 211 |
| abstract_inverted_index.conserve | 236 |
| abstract_inverted_index.empowers | 215 |
| abstract_inverted_index.enhanced | 155 |
| abstract_inverted_index.insights | 107, 132 |
| abstract_inverted_index.interact | 218 |
| abstract_inverted_index.language | 2, 20, 38, 64 |
| abstract_inverted_index.multiple | 185 |
| abstract_inverted_index.offering | 130 |
| abstract_inverted_index.outcomes | 183 |
| abstract_inverted_index.precise, | 86 |
| abstract_inverted_index.process, | 231 |
| abstract_inverted_index.question | 177 |
| abstract_inverted_index.research | 9 |
| abstract_inverted_index.LLaVA-Med | 150 |
| abstract_inverted_index.MIMIC-CXR | 172 |
| abstract_inverted_index.accuracy, | 234 |
| abstract_inverted_index.assistant | 23 |
| abstract_inverted_index.currently | 54, 77 |
| abstract_inverted_index.diagnosis | 166 |
| abstract_inverted_index.evaluated | 197 |
| abstract_inverted_index.interface | 39 |
| abstract_inverted_index.language, | 224 |
| abstract_inverted_index.responses | 71, 195 |
| abstract_inverted_index.LLaVA-Med, | 16 |
| abstract_inverted_index.Leveraging | 204 |
| abstract_inverted_index.assistance | 99 |
| abstract_inverted_index.biomedical | 29 |
| abstract_inverted_index.challenges | 58 |
| abstract_inverted_index.clinicians | 216 |
| abstract_inverted_index.comprising | 158 |
| abstract_inverted_index.diagnosis. | 143 |
| abstract_inverted_index.diagnostic | 209, 233 |
| abstract_inverted_index.incredibly | 7 |
| abstract_inverted_index.particular | 110 |
| abstract_inverted_index.pioneering | 18 |
| abstract_inverted_index.predictive | 182 |
| abstract_inverted_index.progressed | 6 |
| abstract_inverted_index.radiologic | 98, 111 |
| abstract_inverted_index.reporting, | 129 |
| abstract_inverted_index.streamline | 228 |
| abstract_inverted_index.well-known | 57 |
| abstract_inverted_index.CXR-related | 175 |
| abstract_inverted_index.close-ended | 202 |
| abstract_inverted_index.demographic | 168 |
| abstract_inverted_index.fine-tuning | 148 |
| abstract_inverted_index.formulation | 140 |
| abstract_inverted_index.healthcare, | 90 |
| abstract_inverted_index.imprecision | 69 |
| abstract_inverted_index.improvement | 193 |
| abstract_inverted_index.multi-modal | 28, 50 |
| abstract_inverted_index.potentially | 227 |
| abstract_inverted_index.predictions | 169 |
| abstract_inverted_index.significant | 192 |
| abstract_inverted_index.adaptability | 81 |
| abstract_inverted_index.architecture | 151 |
| abstract_inverted_index.biomedicine, | 25 |
| abstract_inverted_index.misdiagnosis | 75 |
| abstract_inverted_index.radiological | 128 |
| abstract_inverted_index.applicability | 11 |
| abstract_inverted_index.comprehensive | 131 |
| abstract_inverted_index.generalizable | 46 |
| abstract_inverted_index.instructions, | 161 |
| abstract_inverted_index.radiologists. | 41 |
| abstract_inverted_index.statistically | 191 |
| abstract_inverted_index.user-friendly | 87 |
| abstract_inverted_index.Hallucinations | 67 |
| abstract_inverted_index.conversational | 119 |
| abstract_inverted_index.conversations. | 203 |
| abstract_inverted_index.conversational, | 97 |
| abstract_inverted_index.decision-making | 230 |
| abstract_inverted_index.general-purpose | 13 |
| abstract_inverted_index.domain-specific, | 96 |
| abstract_inverted_index.state-of-the-art | 208 |
| abstract_inverted_index.instruction-following | 156 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |