D-S Augmentation: Density-Semantics Augmentation for 3-D Object Detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/jsen.2022.3231882
Cameras and light detection and ranging (LiDAR) sensors are commonly used together in autonomous vehicles to provide rich color and texture information and information on the location of objects, respectively. However, fusing image and point-cloud information remains a key challenge. In this article, we propose D-S augmentation as a 3-D object detection method based on point-cloud density and semantic augmentation. Our proposed approach first performs 2-D bounding box detection and instance segmentation on an image. Then, a LiDAR point cloud is projected onto an instance segmentation mask, and a fixed number of random points are generated. Finally, a global -nearest neighbor clustering is used to associate random and projected points to give depth to virtual points and complete point-cloud density augmentation (P-DA). Then, point-cloud semantic augmentation (P-SA) is performed, in which the instance segmentation mask of an object is used to associate it with the point cloud. The instance-segmented class labels and segmentation scores are assigned to the projected cloud, and the projection points added with 1-D features are inversely mapped to the point-cloud space to obtain a semantically augmented point cloud. We conducted extensive experiments on the nuScenes (Caesar et al., 2020) and KITTI (Geiger et al., 2012) datasets. The results demonstrate the effectiveness and efficiency of our proposed method. Notably, D-S augmentation outperformed a LiDAR-only baseline detector by +7.9% in terms of mean average precision (mAP) and +5.1% in terms of nuScenes detection score (NDS) and outperformed the state-of-the-art multimodal fusion-based methods. We also present the results of ablation studies to show that the fusion module improved the performance of a baseline detector.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jsen.2022.3231882
- OA Status
- hybrid
- Cited By
- 4
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313591774
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313591774Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jsen.2022.3231882Digital Object Identifier
- Title
-
D-S Augmentation: Density-Semantics Augmentation for 3-D Object DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-03Full publication date if available
- Authors
-
Zhiqiang Liu, Peicheng Shi, Heng Qi, Aixi YangList of authors in order
- Landing page
-
https://doi.org/10.1109/jsen.2022.3231882Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jsen.2022.3231882Direct OA link when available
- Concepts
-
Point cloud, Lidar, Segmentation, Artificial intelligence, Computer science, Computer vision, Object detection, Point (geometry), Cluster analysis, Projection (relational algebra), Object (grammar), Mathematics, Algorithm, Remote sensing, Geometry, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313591774 |
|---|---|
| doi | https://doi.org/10.1109/jsen.2022.3231882 |
| ids.doi | https://doi.org/10.1109/jsen.2022.3231882 |
| ids.openalex | https://openalex.org/W4313591774 |
| fwci | 0.72787336 |
| type | article |
| title | D-S Augmentation: Density-Semantics Augmentation for 3-D Object Detection |
| biblio.issue | 3 |
| biblio.volume | 23 |
| biblio.last_page | 2772 |
| biblio.first_page | 2760 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10191 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Robotics and Sensor-Based Localization |
| topics[2].id | https://openalex.org/T11164 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Remote Sensing and LiDAR Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C131979681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8567089438438416 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[0].display_name | Point cloud |
| concepts[1].id | https://openalex.org/C51399673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.686951756477356 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[1].display_name | Lidar |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6542614102363586 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.618018627166748 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6034438014030457 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.503462016582489 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C2776151529 |
| concepts[6].level | 3 |
| concepts[6].score | 0.45878058671951294 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[6].display_name | Object detection |
| concepts[7].id | https://openalex.org/C28719098 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45630472898483276 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[7].display_name | Point (geometry) |
| concepts[8].id | https://openalex.org/C73555534 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45311036705970764 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[8].display_name | Cluster analysis |
| concepts[9].id | https://openalex.org/C57493831 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43404072523117065 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[9].display_name | Projection (relational algebra) |
| concepts[10].id | https://openalex.org/C2781238097 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4322836399078369 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[10].display_name | Object (grammar) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2538023293018341 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.19684219360351562 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C62649853 |
| concepts[13].level | 1 |
| concepts[13].score | 0.16264909505844116 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[13].display_name | Remote sensing |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11904919147491455 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.10515040159225464 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/point-cloud |
| keywords[0].score | 0.8567089438438416 |
| keywords[0].display_name | Point cloud |
| keywords[1].id | https://openalex.org/keywords/lidar |
| keywords[1].score | 0.686951756477356 |
| keywords[1].display_name | Lidar |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.6542614102363586 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.618018627166748 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6034438014030457 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.503462016582489 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/object-detection |
| keywords[6].score | 0.45878058671951294 |
| keywords[6].display_name | Object detection |
| keywords[7].id | https://openalex.org/keywords/point |
| keywords[7].score | 0.45630472898483276 |
| keywords[7].display_name | Point (geometry) |
| keywords[8].id | https://openalex.org/keywords/cluster-analysis |
| keywords[8].score | 0.45311036705970764 |
| keywords[8].display_name | Cluster analysis |
| keywords[9].id | https://openalex.org/keywords/projection |
| keywords[9].score | 0.43404072523117065 |
| keywords[9].display_name | Projection (relational algebra) |
| keywords[10].id | https://openalex.org/keywords/object |
| keywords[10].score | 0.4322836399078369 |
| keywords[10].display_name | Object (grammar) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2538023293018341 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.19684219360351562 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/remote-sensing |
| keywords[13].score | 0.16264909505844116 |
| keywords[13].display_name | Remote sensing |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.11904919147491455 |
| keywords[14].display_name | Geometry |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.10515040159225464 |
| keywords[15].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1109/jsen.2022.3231882 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S189694085 |
| locations[0].source.issn | 1530-437X, 1558-1748 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1530-437X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Sensors Journal |
| locations[0].source.host_organization | https://openalex.org/P4310321027 |
| locations[0].source.host_organization_name | IEEE Sensors Council |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321027, https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | IEEE Sensors Council, Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Sensors Journal |
| locations[0].landing_page_url | https://doi.org/10.1109/jsen.2022.3231882 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5080642484 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3060-0472 |
| authorships[0].author.display_name | Zhiqiang Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[0].affiliations[0].raw_affiliation_string | Mechanical Engineering Department, Anhui Polytechnic University, Wuhu, China |
| authorships[0].institutions[0].id | https://openalex.org/I70908550 |
| authorships[0].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Anhui Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhiqiang Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Mechanical Engineering Department, Anhui Polytechnic University, Wuhu, China |
| authorships[1].author.id | https://openalex.org/A5046985719 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1533-8154 |
| authorships[1].author.display_name | Peicheng Shi |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[1].affiliations[0].raw_affiliation_string | Mechanical Engineering Department, Anhui Polytechnic University, Wuhu, China |
| authorships[1].institutions[0].id | https://openalex.org/I70908550 |
| authorships[1].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Anhui Polytechnic University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peicheng Shi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Mechanical Engineering Department, Anhui Polytechnic University, Wuhu, China |
| authorships[2].author.id | https://openalex.org/A5009721481 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6930-5898 |
| authorships[2].author.display_name | Heng Qi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I70908550 |
| authorships[2].affiliations[0].raw_affiliation_string | Mechanical Engineering Department, Anhui Polytechnic University, Wuhu, China |
| authorships[2].institutions[0].id | https://openalex.org/I70908550 |
| authorships[2].institutions[0].ror | https://ror.org/041sj0284 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I70908550 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Anhui Polytechnic University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Heng Qi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Mechanical Engineering Department, Anhui Polytechnic University, Wuhu, China |
| authorships[3].author.id | https://openalex.org/A5102010695 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-2029-0537 |
| authorships[3].author.display_name | Aixi Yang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210132079, https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | Polytechnic Institute of Zhejiang University, Hangzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210132079 |
| authorships[3].institutions[0].ror | https://ror.org/03sxnxp24 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210132079 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hangzhou Wanxiang Polytechnic |
| authorships[3].institutions[1].id | https://openalex.org/I76130692 |
| authorships[3].institutions[1].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Zhejiang University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Aixi Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Polytechnic Institute of Zhejiang University, Hangzhou, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jsen.2022.3231882 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | D-S Augmentation: Density-Semantics Augmentation for 3-D Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W4319837668, https://openalex.org/W4308071650, https://openalex.org/W3188333020, https://openalex.org/W1964041166, https://openalex.org/W4293094720, https://openalex.org/W2739701376, https://openalex.org/W2114282491 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1109/jsen.2022.3231882 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S189694085 |
| best_oa_location.source.issn | 1530-437X, 1558-1748 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1530-437X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Sensors Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310321027 |
| best_oa_location.source.host_organization_name | IEEE Sensors Council |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321027, https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | IEEE Sensors Council, Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Sensors Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jsen.2022.3231882 |
| primary_location.id | doi:10.1109/jsen.2022.3231882 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S189694085 |
| primary_location.source.issn | 1530-437X, 1558-1748 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1530-437X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Sensors Journal |
| primary_location.source.host_organization | https://openalex.org/P4310321027 |
| primary_location.source.host_organization_name | IEEE Sensors Council |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321027, https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | IEEE Sensors Council, Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Sensors Journal |
| primary_location.landing_page_url | https://doi.org/10.1109/jsen.2022.3231882 |
| publication_date | 2023-01-03 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2963727135, https://openalex.org/W2897529137, https://openalex.org/W2968296999, https://openalex.org/W2949708697, https://openalex.org/W6767379092, https://openalex.org/W6779564934, https://openalex.org/W3167095230, https://openalex.org/W6802716934, https://openalex.org/W3113028524, https://openalex.org/W3116450803, https://openalex.org/W3118341329, https://openalex.org/W3008105217, https://openalex.org/W6739778489, https://openalex.org/W3035574168, https://openalex.org/W2555618208, https://openalex.org/W2963400571, https://openalex.org/W3000171824, https://openalex.org/W2951517617, https://openalex.org/W2031031248, https://openalex.org/W3130463448, https://openalex.org/W2967324759, https://openalex.org/W2805101907, https://openalex.org/W2798965597, https://openalex.org/W2981949127, https://openalex.org/W2560609797, https://openalex.org/W6772253573, https://openalex.org/W2964062501, https://openalex.org/W2970095196, https://openalex.org/W3004237909, https://openalex.org/W2962888833, https://openalex.org/W3117804044, https://openalex.org/W3166089996, https://openalex.org/W3035461736, https://openalex.org/W6803556390, https://openalex.org/W2963150697, https://openalex.org/W2150066425, https://openalex.org/W3035346742, https://openalex.org/W3107212734, https://openalex.org/W3109675406, https://openalex.org/W2914821954, https://openalex.org/W2872491670, https://openalex.org/W3136022415, https://openalex.org/W6779983907, https://openalex.org/W3017930107, https://openalex.org/W4300479382, https://openalex.org/W6749845547, https://openalex.org/W3035750285, https://openalex.org/W6785213549, https://openalex.org/W3108426750, https://openalex.org/W3206335707, https://openalex.org/W3175720495, https://openalex.org/W2997337685, https://openalex.org/W2963680153, https://openalex.org/W3037262931, https://openalex.org/W3036853234, https://openalex.org/W3107819843, https://openalex.org/W2969987486, https://openalex.org/W2795247881 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 37, 48, 76, 88, 97, 183, 221, 268 |
| abstract_inverted_index.In | 40 |
| abstract_inverted_index.We | 188, 250 |
| abstract_inverted_index.an | 73, 83, 142 |
| abstract_inverted_index.as | 47 |
| abstract_inverted_index.by | 225 |
| abstract_inverted_index.et | 196, 202 |
| abstract_inverted_index.in | 12, 135, 227, 236 |
| abstract_inverted_index.is | 80, 108, 133, 144 |
| abstract_inverted_index.it | 148 |
| abstract_inverted_index.of | 27, 91, 141, 213, 229, 238, 255, 267 |
| abstract_inverted_index.on | 24, 54, 72, 192 |
| abstract_inverted_index.to | 15, 110, 116, 119, 146, 162, 177, 181, 258 |
| abstract_inverted_index.we | 43 |
| abstract_inverted_index.1-D | 172 |
| abstract_inverted_index.2-D | 65 |
| abstract_inverted_index.3-D | 49 |
| abstract_inverted_index.D-S | 45, 218 |
| abstract_inverted_index.Our | 60 |
| abstract_inverted_index.The | 153, 206 |
| abstract_inverted_index.and | 1, 4, 19, 22, 33, 57, 69, 87, 113, 122, 157, 166, 199, 211, 234, 243 |
| abstract_inverted_index.are | 8, 94, 160, 174 |
| abstract_inverted_index.box | 67 |
| abstract_inverted_index.key | 38 |
| abstract_inverted_index.our | 214 |
| abstract_inverted_index.the | 25, 137, 150, 163, 167, 178, 193, 209, 245, 253, 261, 265 |
| abstract_inverted_index.al., | 197, 203 |
| abstract_inverted_index.also | 251 |
| abstract_inverted_index.give | 117 |
| abstract_inverted_index.mask | 140 |
| abstract_inverted_index.mean | 230 |
| abstract_inverted_index.onto | 82 |
| abstract_inverted_index.rich | 17 |
| abstract_inverted_index.show | 259 |
| abstract_inverted_index.that | 260 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.used | 10, 109, 145 |
| abstract_inverted_index.with | 149, 171 |
| abstract_inverted_index.(NDS) | 242 |
| abstract_inverted_index.(mAP) | 233 |
| abstract_inverted_index.+5.1% | 235 |
| abstract_inverted_index.+7.9% | 226 |
| abstract_inverted_index.2012) | 204 |
| abstract_inverted_index.2020) | 198 |
| abstract_inverted_index.KITTI | 200 |
| abstract_inverted_index.LiDAR | 77 |
| abstract_inverted_index.Then, | 75, 128 |
| abstract_inverted_index.added | 170 |
| abstract_inverted_index.based | 53 |
| abstract_inverted_index.class | 155 |
| abstract_inverted_index.cloud | 79 |
| abstract_inverted_index.color | 18 |
| abstract_inverted_index.depth | 118 |
| abstract_inverted_index.first | 63 |
| abstract_inverted_index.fixed | 89 |
| abstract_inverted_index.image | 32 |
| abstract_inverted_index.light | 2 |
| abstract_inverted_index.mask, | 86 |
| abstract_inverted_index.point | 78, 151, 186 |
| abstract_inverted_index.score | 241 |
| abstract_inverted_index.space | 180 |
| abstract_inverted_index.terms | 228, 237 |
| abstract_inverted_index.which | 136 |
| abstract_inverted_index.(P-SA) | 132 |
| abstract_inverted_index.cloud, | 165 |
| abstract_inverted_index.cloud. | 152, 187 |
| abstract_inverted_index.fusing | 31 |
| abstract_inverted_index.fusion | 262 |
| abstract_inverted_index.global | 98 |
| abstract_inverted_index.image. | 74 |
| abstract_inverted_index.labels | 156 |
| abstract_inverted_index.mapped | 176 |
| abstract_inverted_index.method | 52 |
| abstract_inverted_index.module | 263 |
| abstract_inverted_index.number | 90 |
| abstract_inverted_index.object | 50, 143 |
| abstract_inverted_index.obtain | 182 |
| abstract_inverted_index.points | 93, 115, 121, 169 |
| abstract_inverted_index.random | 92, 112 |
| abstract_inverted_index.scores | 159 |
| abstract_inverted_index.(Caesar | 195 |
| abstract_inverted_index.(Geiger | 201 |
| abstract_inverted_index.(LiDAR) | 6 |
| abstract_inverted_index.(P-DA). | 127 |
| abstract_inverted_index.Cameras | 0 |
| abstract_inverted_index.average | 231 |
| abstract_inverted_index.density | 56, 125 |
| abstract_inverted_index.method. | 216 |
| abstract_inverted_index.present | 252 |
| abstract_inverted_index.propose | 44 |
| abstract_inverted_index.provide | 16 |
| abstract_inverted_index.ranging | 5 |
| abstract_inverted_index.remains | 36 |
| abstract_inverted_index.results | 207, 254 |
| abstract_inverted_index.sensors | 7 |
| abstract_inverted_index.studies | 257 |
| abstract_inverted_index.texture | 20 |
| abstract_inverted_index.virtual | 120 |
| abstract_inverted_index.-nearest | 105 |
| abstract_inverted_index.Finally, | 96 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.Notably, | 217 |
| abstract_inverted_index.ablation | 256 |
| abstract_inverted_index.approach | 62 |
| abstract_inverted_index.article, | 42 |
| abstract_inverted_index.assigned | 161 |
| abstract_inverted_index.baseline | 223, 269 |
| abstract_inverted_index.bounding | 66 |
| abstract_inverted_index.commonly | 9 |
| abstract_inverted_index.complete | 123 |
| abstract_inverted_index.detector | 224 |
| abstract_inverted_index.features | 173 |
| abstract_inverted_index.improved | 264 |
| abstract_inverted_index.instance | 70, 84, 138 |
| abstract_inverted_index.location | 26 |
| abstract_inverted_index.methods. | 249 |
| abstract_inverted_index.neighbor | 106 |
| abstract_inverted_index.nuScenes | 194, 239 |
| abstract_inverted_index.objects, | 28 |
| abstract_inverted_index.performs | 64 |
| abstract_inverted_index.proposed | 61, 215 |
| abstract_inverted_index.semantic | 58, 130 |
| abstract_inverted_index.together | 11 |
| abstract_inverted_index.vehicles | 14 |
| abstract_inverted_index.<tex-math | 102 |
| abstract_inverted_index.associate | 111, 147 |
| abstract_inverted_index.augmented | 185 |
| abstract_inverted_index.conducted | 189 |
| abstract_inverted_index.datasets. | 205 |
| abstract_inverted_index.detection | 3, 51, 68, 240 |
| abstract_inverted_index.detector. | 270 |
| abstract_inverted_index.extensive | 190 |
| abstract_inverted_index.inversely | 175 |
| abstract_inverted_index.precision | 232 |
| abstract_inverted_index.projected | 81, 114, 164 |
| abstract_inverted_index.LiDAR-only | 222 |
| abstract_inverted_index.autonomous | 13 |
| abstract_inverted_index.challenge. | 39 |
| abstract_inverted_index.clustering | 107 |
| abstract_inverted_index.efficiency | 212 |
| abstract_inverted_index.generated. | 95 |
| abstract_inverted_index.multimodal | 247 |
| abstract_inverted_index.performed, | 134 |
| abstract_inverted_index.projection | 168 |
| abstract_inverted_index.demonstrate | 208 |
| abstract_inverted_index.experiments | 191 |
| abstract_inverted_index.information | 21, 23, 35 |
| abstract_inverted_index.performance | 266 |
| abstract_inverted_index.point-cloud | 34, 55, 124, 129, 179 |
| abstract_inverted_index.augmentation | 46, 126, 131, 219 |
| abstract_inverted_index.fusion-based | 248 |
| abstract_inverted_index.outperformed | 220, 244 |
| abstract_inverted_index.segmentation | 71, 85, 139, 158 |
| abstract_inverted_index.semantically | 184 |
| abstract_inverted_index.augmentation. | 59 |
| abstract_inverted_index.effectiveness | 210 |
| abstract_inverted_index.respectively. | 29 |
| abstract_inverted_index.<inline-formula | 99 |
| abstract_inverted_index.state-of-the-art | 246 |
| abstract_inverted_index.instance-segmented | 154 |
| abstract_inverted_index.notation="LaTeX">${N}$ | 103 |
| abstract_inverted_index.</tex-math></inline-formula> | 104 |
| abstract_inverted_index.xmlns:xlink="http://www.w3.org/1999/xlink"> | 101 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML" | 100 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.66411745 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |