d5-5-assessment-of-impacts-bristol Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.3932208
Data output from the tool set application for the assessment of the environmental (emissions, carbon footprint, ambient air concentrations), health (exposure and health effects), and economic impacts (e.g. health-related costs). D5.5 Assessment of Impacts - First City file: d5.5-assessment-of-impacts-first-city_-revised-june-2020.pdf This is an action deliverable consisting of the impact assessment work undertaken in WP5 encompassing: 1. the integrated urban module based on the household and dwelling characteristics; 2. the transport emission sector; 3. the industrial, residential, commercial and institutional emission sectores; 4. the energy/ power generation 5. the air quality and related population exposure; 6. the health-related impacts and costs; and 7. the carbon footprint. This report aims to describe the framework developed for the assessment of the environmental, health, and economic impacts for the first ClairCity case study (Bristol City Council). The impact assessment analysis data can be found on the ClairCity Data Portal and this report is the submitted formal deliverable to record that the work has been delivered. specifications of modelling tool set file: module_specifications_report.pdf The general purpose of this document is to come up with an aligned view of the model toolset developed to be applied to the 6 ClairCity case studies. Bristol shapefile file: bristol_200mx200m.rar Shapefile with the urban scale domain over Bristol with 20 km x 20 km, with a grid resolution of 200m x 200m 1_BRS_Integrated_household_BAU_Scenarios file: bristol_household_projections.xlsx Official ONS projections of Bristol's household population by age group of household head, and household structure (household size and number of children) 1_BRS_Integrated_BAU_Scenarios_2025 file: bristol_hh_energy_use_2025.xlsx Household energy use projections for 2025, based on official ONS household population projections and the dataset 1_BRS_Integrated_BAU_Scenarios_2035 file: bristol_hh_energy_use_2035.xlsx Household energy use projections for 2035, based on official ONS household population projections and the dataset 1_BRS_Integrated_BAU_Scenarios_2050 file: bristol_hh_energy_use_2050.xlsx Household energy use projections for 2050, based on official ONS household population projections and the dataset 2_BRS_Natural_baseline file: claircity_naturalemissions_brs_jan2019.pdf Emissions (in kg/year) were based on EMEP emission inventory for nature at 0.1x0.1 degrees resolution (~ 10 km) for the year 2015 disaggregated for the urban domain of Bristol by forest, grass, parks and nature reserve areas classified in the Open Street Map database. 2_BRS_Agriculture_baseline file: claircity_agricultureemissions_brs_jan2019.pdf Emissions (in kg/year) were based on EMEP emission inventory for agriculture and livestock at 0.1x0.1 degrees resolution (~ 10 km) for the year 2015 disaggregated for the urban domain of Bristol by farms, meadows, vineyards land uses classified in the Open Street Map database 2_BRS_IRCI_baseline file: ech.ma.15-fr1-wp5-irc-ed5.3.pdf This document reports about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular its scope is to: • Develop a specific tool to evaluate emissions using existing industrial emissions data (EMEP, E-PRTR, others) and EMEP/EEA Emission inventory Guidebook; • Develop a specific tool to estimate emissions from small combustion in residential, commercial and institutional sector. 2_BRS_IRCI_baseline_not_industry_area_fuel_cons file: 2_brs_irci_baseline_not_industry_area_fuel_cons.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular the dataset reports area fuel consumptions from small combustion in residential, commercial and institutional sector evaluated using UK statistical official data. The methodology and results are described in "2_BRS_IRCI_baseline2" document. 2_BRS_IRCI_baseline_not_industry_area_emi file: 2_brs_irci_baseline_not_industry_area_emi.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular the dataset reports area NOX and PM10 emissions from small combustion in residential, commercial and institutional sector evaluated using EMEP/EEA Emission inventory Guidebook and UK statistical official data. The methodology and results are described in "2_BRS_IRCI_baseline" document. 2_BRS_IRCI_baseline_industry_area_emi file: 2_brs_irci_baseline_industry_area_emi.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular the dataset reports NOX and PM10 Emissions from minor PRTR sources allocated to 20x20 grid. The methodology and results are described in "2_BRS_IRCI_baseline" document. 2_BRS_IRCI_baseline_industry_point_emi file: 2_brs_irci_baseline_industry_point_emi.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular the dataset reports NOX and PM10 Emissions from main PRTR sources by source. The methodology and results are described in "2_BRS_IRCI_baseline" document. 2_BRS_IRCI_BAU_Scenario file: ech.ma.15-fr3-wp5-irc-future-ed5.pdf This document reports about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module activities related to BAU and scenarios definition. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In this report methodology and results are reported for: • Business as Usual (BAU): future situation without any policy interventions beyond what is decided upon at this point with three-time horizons: 2025, 2035 and 2050; • Scenario: added policy interventions to the BAU, same time horizon as results from Stakeholder Dialogue Workshop; • Unified Policy Scenario: final scenario as a results of Policy Workshop. 2_BRS_IRCI_BAU_not_industry_area_emi_2025 file: 2_brs_irci_bau_not_industry_area_emi_2025.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular the dataset reports future (2025) area NOX and PM10 emissions, in Business As Usual scenario, from small combustion in residential, commercial and institutional sector evaluated during the project as described in "2_BRS_IRCI_BAU_Scenario" document. 2_BRS_IRCI_BAU_not_industry_area_emi_2035 file: 2_brs_irci_bau_not_industry_area_emi_2035.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular the dataset reports future (2035) area NOX and PM10 emissions, in Business As Usual scenario, from small combustion in residential, commercial and institutional sector evaluated during the project as described in "2_BRS_IRCI_BAU_Scenario" document. 2_BRS_IRCI_BAU_not_industry_area_emi_2050 file: 2_brs_irci_bau_not_industry_area_emi_2050.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular the dataset reports future (2050) area NOX and PM10 emissions, in Business As Usual scenario, from small combustion in residential, commercial and institutional sector evaluated during the project as described in "2_BRS_IRCI_BAU_Scenario" document. 2_BRS_IRCI_BAU_industry_area_emi_2025 file: 2_brs_irci_bau_industry_area_emi_2025.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial, residential, commercial and institutional emissions sources. In particular the dataset reports future (2025) NOX and PM10 Emissions, in Business As Usual scenario, from minor PRTR sources, allocated to 20x20 grid evaluated during the project as described in "2_BRS_IRCI_BAU_Scenario" document. 2_BRS_IRCI_BAU_industry_area_emi_2035 file: 2_brs_irci_bau_industry_area_emi_2035.csv This dataset reports results about the WP5 Task 5.2.4 Design & development of Industry Residential/Commercial & Other services module. The module integrates in the overall model the industrial,
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.3932208
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393433721
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393433721Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.3932208Digital Object Identifier
- Title
-
d5-5-assessment-of-impacts-bristolWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-06Full publication date if available
- Authors
-
Myriam Lopes, Carlos Borrego, Vera Rodrigues, Sílvia Coelho, Carlos Augusto Faria, Sandra Rafael, Joana Ferreira, Ana Patrícia Fernandes, Kris Vanherle, Iason Diafas, Angreine Kewo, Per Sieverts, Svein Knudsen, Joana Soares, C. TrozziList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.3932208Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.3932208Direct OA link when available
- Concepts
-
Environmental science, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393433721 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.3932208 |
| ids.doi | https://doi.org/10.5281/zenodo.3932208 |
| ids.openalex | https://openalex.org/W4393433721 |
| fwci | |
| type | dataset |
| title | d5-5-assessment-of-impacts-bristol |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11986 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.07169999927282333 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1802 |
| topics[0].subfield.display_name | Information Systems and Management |
| topics[0].display_name | Scientific Computing and Data Management |
| topics[1].id | https://openalex.org/T12766 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.061900001019239426 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1802 |
| topics[1].subfield.display_name | Information Systems and Management |
| topics[1].display_name | Interdisciplinary Research and Collaboration |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C39432304 |
| concepts[0].level | 0 |
| concepts[0].score | 0.34967759251594543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[0].display_name | Environmental science |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.32436203956604004 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/environmental-science |
| keywords[0].score | 0.34967759251594543 |
| keywords[0].display_name | Environmental science |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.32436203956604004 |
| keywords[1].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.5281/zenodo.3932208 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.3932208 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5041496242 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7624-1279 |
| authorships[0].author.display_name | Myriam Lopes |
| authorships[0].affiliations[0].raw_affiliation_string | UAVR |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Myriam Lopes |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | UAVR |
| authorships[1].author.id | https://openalex.org/A5090712966 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9452-9970 |
| authorships[1].author.display_name | Carlos Borrego |
| authorships[1].affiliations[0].raw_affiliation_string | UAVR |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Carlos Borrego |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | UAVR |
| authorships[2].author.id | https://openalex.org/A5057474803 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3900-4522 |
| authorships[2].author.display_name | Vera Rodrigues |
| authorships[2].affiliations[0].raw_affiliation_string | UAVR |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vera Rodrigues |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | UAVR |
| authorships[3].author.id | https://openalex.org/A5063057677 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4830-6266 |
| authorships[3].author.display_name | Sílvia Coelho |
| authorships[3].affiliations[0].raw_affiliation_string | UAVR |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sílvia Coelho |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | UAVR |
| authorships[4].author.id | https://openalex.org/A5089671244 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1971-8170 |
| authorships[4].author.display_name | Carlos Augusto Faria |
| authorships[4].affiliations[0].raw_affiliation_string | UAVR |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Carlos Faria |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | UAVR |
| authorships[5].author.id | https://openalex.org/A5069064870 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6559-4802 |
| authorships[5].author.display_name | Sandra Rafael |
| authorships[5].affiliations[0].raw_affiliation_string | UAVR |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sandra Rafael |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | UAVR |
| authorships[6].author.id | https://openalex.org/A5004750677 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9438-4185 |
| authorships[6].author.display_name | Joana Ferreira |
| authorships[6].affiliations[0].raw_affiliation_string | UAVR |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Joana Ferreira |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | UAVR |
| authorships[7].author.id | https://openalex.org/A5050329518 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5405-9647 |
| authorships[7].author.display_name | Ana Patrícia Fernandes |
| authorships[7].affiliations[0].raw_affiliation_string | UAVR |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Ana Patrícia Fernandes |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | UAVR |
| authorships[8].author.id | https://openalex.org/A5025484505 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Kris Vanherle |
| authorships[8].affiliations[0].raw_affiliation_string | TML |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Kris Vanherle |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | TML |
| authorships[9].author.id | https://openalex.org/A5031251533 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Iason Diafas |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210101692 |
| authorships[9].affiliations[0].raw_affiliation_string | PBL |
| authorships[9].institutions[0].id | https://openalex.org/I4210101692 |
| authorships[9].institutions[0].ror | https://ror.org/016p2sb76 |
| authorships[9].institutions[0].type | company |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210101692 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Particle Beam Lasers (United States) |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Iason Diafas |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | PBL |
| authorships[10].author.id | https://openalex.org/A5045839582 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9331-8410 |
| authorships[10].author.display_name | Angreine Kewo |
| authorships[10].affiliations[0].raw_affiliation_string | DTU |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Angreine Kewo |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | DTU |
| authorships[11].author.id | https://openalex.org/A5094313381 |
| authorships[11].author.orcid | |
| authorships[11].author.display_name | Per Sieverts |
| authorships[11].affiliations[0].raw_affiliation_string | DTU |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Per Sieverts |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | DTU |
| authorships[12].author.id | https://openalex.org/A5114141932 |
| authorships[12].author.orcid | |
| authorships[12].author.display_name | Svein Knudsen |
| authorships[12].affiliations[0].raw_affiliation_string | NILU |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Svein Knudsen |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | NILU |
| authorships[13].author.id | https://openalex.org/A5082329707 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Joana Soares |
| authorships[13].affiliations[0].raw_affiliation_string | NILU |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Joana Soares |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | NILU |
| authorships[14].author.id | https://openalex.org/A5060019817 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-4090-7817 |
| authorships[14].author.display_name | C. Trozzi |
| authorships[14].countries | DE |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I86487443 |
| authorships[14].affiliations[0].raw_affiliation_string | Techne |
| authorships[14].institutions[0].id | https://openalex.org/I86487443 |
| authorships[14].institutions[0].ror | https://ror.org/03eydf751 |
| authorships[14].institutions[0].type | company |
| authorships[14].institutions[0].lineage | https://openalex.org/I4210126864, https://openalex.org/I86487443 |
| authorships[14].institutions[0].country_code | DE |
| authorships[14].institutions[0].display_name | TechnipFMC (Germany) |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Carlo Trozzi |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Techne |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.3932208 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | d5-5-assessment-of-impacts-bristol |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11986 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.07169999927282333 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1802 |
| primary_topic.subfield.display_name | Information Systems and Management |
| primary_topic.display_name | Scientific Computing and Data Management |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.3932208 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.3932208 |
| primary_location.id | doi:10.5281/zenodo.3932208 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.3932208 |
| publication_date | 2020-07-06 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 34 |
| abstract_inverted_index.6 | 191 |
| abstract_inverted_index.a | 214, 441, 462, 848 |
| abstract_inverted_index.x | 210, 219 |
| abstract_inverted_index.(~ | 321, 370 |
| abstract_inverted_index.1. | 54 |
| abstract_inverted_index.10 | 322, 371 |
| abstract_inverted_index.2. | 66 |
| abstract_inverted_index.20 | 208, 211 |
| abstract_inverted_index.3. | 71 |
| abstract_inverted_index.4. | 80 |
| abstract_inverted_index.5. | 85 |
| abstract_inverted_index.6. | 93 |
| abstract_inverted_index.7. | 100 |
| abstract_inverted_index.As | 904, 976, 1048, 1119 |
| abstract_inverted_index.In | 433, 514, 583, 659, 722, 789, 890, 962, 1034, 1106 |
| abstract_inverted_index.UK | 533, 609 |
| abstract_inverted_index.an | 41, 178 |
| abstract_inverted_index.as | 800, 835, 847, 920, 992, 1064, 1134 |
| abstract_inverted_index.at | 317, 366, 814 |
| abstract_inverted_index.be | 137, 187 |
| abstract_inverted_index.by | 231, 335, 384, 735 |
| abstract_inverted_index.in | 51, 344, 391, 421, 471, 502, 525, 543, 571, 596, 619, 647, 682, 710, 743, 777, 878, 902, 910, 922, 950, 974, 982, 994, 1022, 1046, 1054, 1066, 1094, 1117, 1136, 1164 |
| abstract_inverted_index.is | 40, 147, 173, 437, 811 |
| abstract_inverted_index.km | 209 |
| abstract_inverted_index.of | 10, 32, 45, 115, 161, 170, 181, 217, 227, 234, 244, 333, 382, 411, 492, 561, 637, 700, 760, 850, 868, 940, 1012, 1084, 1154 |
| abstract_inverted_index.on | 60, 139, 256, 275, 294, 311, 358 |
| abstract_inverted_index.to | 107, 152, 174, 186, 189, 444, 465, 673, 769, 829, 1127 |
| abstract_inverted_index.up | 176 |
| abstract_inverted_index.(in | 307, 354 |
| abstract_inverted_index.BAU | 770 |
| abstract_inverted_index.Map | 348, 395 |
| abstract_inverted_index.NOX | 589, 664, 727, 898, 970, 1042, 1113 |
| abstract_inverted_index.ONS | 225, 258, 277, 296 |
| abstract_inverted_index.The | 131, 167, 418, 499, 537, 568, 613, 644, 676, 707, 737, 774, 875, 947, 1019, 1091, 1161 |
| abstract_inverted_index.WP5 | 52, 405, 486, 555, 631, 694, 754, 862, 934, 1006, 1078, 1148 |
| abstract_inverted_index.age | 232 |
| abstract_inverted_index.air | 17, 87 |
| abstract_inverted_index.and | 21, 24, 63, 76, 89, 97, 99, 119, 144, 237, 242, 262, 281, 300, 339, 364, 429, 455, 474, 510, 528, 539, 579, 590, 599, 608, 615, 655, 665, 678, 718, 728, 739, 771, 785, 793, 822, 886, 899, 913, 958, 971, 985, 1030, 1043, 1057, 1102, 1114 |
| abstract_inverted_index.any | 806 |
| abstract_inverted_index.are | 541, 617, 680, 741, 795 |
| abstract_inverted_index.can | 136 |
| abstract_inverted_index.for | 7, 112, 122, 253, 272, 291, 315, 324, 329, 362, 373, 378 |
| abstract_inverted_index.has | 157 |
| abstract_inverted_index.its | 435 |
| abstract_inverted_index.km) | 323, 372 |
| abstract_inverted_index.km, | 212 |
| abstract_inverted_index.set | 5 |
| abstract_inverted_index.the | 3, 8, 11, 46, 55, 61, 67, 72, 81, 86, 94, 101, 109, 113, 116, 123, 140, 148, 155, 182, 190, 201, 263, 282, 301, 325, 330, 345, 374, 379, 392, 404, 422, 425, 485, 503, 506, 516, 554, 572, 575, 585, 630, 648, 651, 661, 693, 711, 714, 724, 753, 778, 781, 830, 861, 879, 882, 892, 918, 933, 951, 954, 964, 990, 1005, 1023, 1026, 1036, 1062, 1077, 1095, 1098, 1108, 1132, 1147, 1165, 1168 |
| abstract_inverted_index.to: | 438 |
| abstract_inverted_index.use | 251, 270, 289 |
| abstract_inverted_index.• | 439, 460, 798, 824, 841 |
| abstract_inverted_index.200m | 218, 220 |
| abstract_inverted_index.2015 | 327, 376 |
| abstract_inverted_index.2035 | 821 |
| abstract_inverted_index.BAU, | 831 |
| abstract_inverted_index.City | 129 |
| abstract_inverted_index.Data | 0, 142 |
| abstract_inverted_index.EMEP | 312, 359 |
| abstract_inverted_index.Open | 346, 393 |
| abstract_inverted_index.PM10 | 591, 666, 729, 900, 972, 1044, 1115 |
| abstract_inverted_index.PRTR | 670, 733, 1124 |
| abstract_inverted_index.Task | 406, 487, 556, 632, 695, 755, 863, 935, 1007, 1079, 1149 |
| abstract_inverted_index.This | 39, 104, 400, 480, 549, 625, 688, 749, 856, 928, 1000, 1072, 1142 |
| abstract_inverted_index.aims | 106 |
| abstract_inverted_index.area | 519, 588, 897, 969, 1041 |
| abstract_inverted_index.been | 158 |
| abstract_inverted_index.case | 126, 193 |
| abstract_inverted_index.come | 175 |
| abstract_inverted_index.data | 135, 451 |
| abstract_inverted_index.for: | 797 |
| abstract_inverted_index.from | 2, 468, 522, 593, 668, 731, 837, 907, 979, 1051, 1122 |
| abstract_inverted_index.fuel | 520 |
| abstract_inverted_index.grid | 215, 1129 |
| abstract_inverted_index.land | 388 |
| abstract_inverted_index.main | 732 |
| abstract_inverted_index.over | 205 |
| abstract_inverted_index.same | 832 |
| abstract_inverted_index.size | 241 |
| abstract_inverted_index.that | 154 |
| abstract_inverted_index.this | 145, 171, 790, 815 |
| abstract_inverted_index.time | 833 |
| abstract_inverted_index.tool | 4, 163, 443, 464 |
| abstract_inverted_index.upon | 813 |
| abstract_inverted_index.uses | 389 |
| abstract_inverted_index.view | 180 |
| abstract_inverted_index.were | 309, 356 |
| abstract_inverted_index.what | 810 |
| abstract_inverted_index.with | 177, 200, 207, 213, 817 |
| abstract_inverted_index.work | 49, 156 |
| abstract_inverted_index.year | 326, 375 |
| abstract_inverted_index.& | 409, 414, 490, 495, 559, 564, 635, 640, 698, 703, 758, 763, 866, 871, 938, 943, 1010, 1015, 1082, 1087, 1152, 1157 |
| abstract_inverted_index.(e.g. | 27 |
| abstract_inverted_index.2025, | 254, 820 |
| abstract_inverted_index.2035, | 273 |
| abstract_inverted_index.2050, | 292 |
| abstract_inverted_index.2050; | 823 |
| abstract_inverted_index.20x20 | 674, 1128 |
| abstract_inverted_index.5.2.4 | 407, 488, 557, 633, 696, 756, 864, 936, 1008, 1080, 1150 |
| abstract_inverted_index.First | 35 |
| abstract_inverted_index.Other | 415, 496, 565, 641, 704, 764, 872, 944, 1016, 1088, 1158 |
| abstract_inverted_index.Usual | 801, 905, 977, 1049, 1120 |
| abstract_inverted_index.about | 403, 484, 553, 629, 692, 752, 860, 932, 1004, 1076, 1146 |
| abstract_inverted_index.added | 826 |
| abstract_inverted_index.areas | 342 |
| abstract_inverted_index.based | 59, 255, 274, 293, 310, 357 |
| abstract_inverted_index.data. | 536, 612 |
| abstract_inverted_index.file: | 37, 165, 197, 222, 247, 266, 285, 304, 351, 398, 478, 547, 623, 686, 747, 854, 926, 998, 1070, 1140 |
| abstract_inverted_index.final | 845 |
| abstract_inverted_index.first | 124 |
| abstract_inverted_index.found | 138 |
| abstract_inverted_index.grid. | 675 |
| abstract_inverted_index.group | 233 |
| abstract_inverted_index.head, | 236 |
| abstract_inverted_index.minor | 669, 1123 |
| abstract_inverted_index.model | 183, 424, 505, 574, 650, 713, 780, 881, 953, 1025, 1097, 1167 |
| abstract_inverted_index.parks | 338 |
| abstract_inverted_index.point | 816 |
| abstract_inverted_index.power | 83 |
| abstract_inverted_index.scale | 203 |
| abstract_inverted_index.scope | 436 |
| abstract_inverted_index.small | 469, 523, 594, 908, 980, 1052 |
| abstract_inverted_index.study | 127 |
| abstract_inverted_index.urban | 57, 202, 331, 380 |
| abstract_inverted_index.using | 447, 532, 603 |
| abstract_inverted_index.(2025) | 896, 1112 |
| abstract_inverted_index.(2035) | 968 |
| abstract_inverted_index.(2050) | 1040 |
| abstract_inverted_index.(BAU): | 802 |
| abstract_inverted_index.(EMEP, | 452 |
| abstract_inverted_index.Design | 408, 489, 558, 634, 697, 757, 865, 937, 1009, 1081, 1151 |
| abstract_inverted_index.Policy | 843, 851 |
| abstract_inverted_index.Portal | 143 |
| abstract_inverted_index.Street | 347, 394 |
| abstract_inverted_index.action | 42 |
| abstract_inverted_index.beyond | 809 |
| abstract_inverted_index.carbon | 14, 102 |
| abstract_inverted_index.costs; | 98 |
| abstract_inverted_index.domain | 204, 332, 381 |
| abstract_inverted_index.during | 917, 989, 1061, 1131 |
| abstract_inverted_index.energy | 250, 269, 288 |
| abstract_inverted_index.farms, | 385 |
| abstract_inverted_index.formal | 150 |
| abstract_inverted_index.future | 803, 895, 967, 1039, 1111 |
| abstract_inverted_index.grass, | 337 |
| abstract_inverted_index.health | 19, 22 |
| abstract_inverted_index.impact | 47, 132 |
| abstract_inverted_index.module | 58, 419, 500, 569, 645, 708, 766, 775, 876, 948, 1020, 1092, 1162 |
| abstract_inverted_index.nature | 316, 340 |
| abstract_inverted_index.number | 243 |
| abstract_inverted_index.output | 1 |
| abstract_inverted_index.policy | 807, 827 |
| abstract_inverted_index.record | 153 |
| abstract_inverted_index.report | 105, 146, 791 |
| abstract_inverted_index.sector | 530, 601, 915, 987, 1059 |
| abstract_inverted_index.0.1x0.1 | 318, 367 |
| abstract_inverted_index.Bristol | 206, 334, 383 |
| abstract_inverted_index.Develop | 440, 461 |
| abstract_inverted_index.E-PRTR, | 453 |
| abstract_inverted_index.Impacts | 33 |
| abstract_inverted_index.Unified | 842 |
| abstract_inverted_index.aligned | 179 |
| abstract_inverted_index.ambient | 16 |
| abstract_inverted_index.applied | 188 |
| abstract_inverted_index.costs). | 29 |
| abstract_inverted_index.dataset | 264, 283, 302, 481, 517, 550, 586, 626, 662, 689, 725, 857, 893, 929, 965, 1001, 1037, 1073, 1109, 1143 |
| abstract_inverted_index.decided | 812 |
| abstract_inverted_index.degrees | 319, 368 |
| abstract_inverted_index.energy/ | 82 |
| abstract_inverted_index.forest, | 336 |
| abstract_inverted_index.general | 168 |
| abstract_inverted_index.health, | 118 |
| abstract_inverted_index.horizon | 834 |
| abstract_inverted_index.impacts | 26, 96, 121 |
| abstract_inverted_index.module. | 417, 498, 567, 643, 706, 874, 946, 1018, 1090, 1160 |
| abstract_inverted_index.others) | 454 |
| abstract_inverted_index.overall | 423, 504, 573, 649, 712, 779, 880, 952, 1024, 1096, 1166 |
| abstract_inverted_index.project | 919, 991, 1063, 1133 |
| abstract_inverted_index.purpose | 169 |
| abstract_inverted_index.quality | 88 |
| abstract_inverted_index.related | 90, 768 |
| abstract_inverted_index.reports | 402, 482, 518, 551, 587, 627, 663, 690, 726, 751, 858, 894, 930, 966, 1002, 1038, 1074, 1110, 1144 |
| abstract_inverted_index.reserve | 341 |
| abstract_inverted_index.results | 483, 540, 552, 616, 628, 679, 691, 740, 794, 836, 849, 859, 931, 1003, 1075, 1145 |
| abstract_inverted_index.sector. | 476 |
| abstract_inverted_index.sector; | 70 |
| abstract_inverted_index.source. | 736 |
| abstract_inverted_index.sources | 671, 734 |
| abstract_inverted_index.toolset | 184 |
| abstract_inverted_index.without | 805 |
| abstract_inverted_index.(Bristol | 128 |
| abstract_inverted_index.Business | 799, 903, 975, 1047, 1118 |
| abstract_inverted_index.Dialogue | 839 |
| abstract_inverted_index.EMEP/EEA | 456, 604 |
| abstract_inverted_index.Emission | 457, 605 |
| abstract_inverted_index.Industry | 412, 493, 562, 638, 701, 761, 869, 941, 1013, 1085, 1155 |
| abstract_inverted_index.Official | 224 |
| abstract_inverted_index.analysis | 134 |
| abstract_inverted_index.database | 396 |
| abstract_inverted_index.describe | 108 |
| abstract_inverted_index.document | 172, 401, 750 |
| abstract_inverted_index.dwelling | 64 |
| abstract_inverted_index.economic | 25, 120 |
| abstract_inverted_index.emission | 69, 78, 313, 360 |
| abstract_inverted_index.estimate | 466 |
| abstract_inverted_index.evaluate | 445 |
| abstract_inverted_index.existing | 448 |
| abstract_inverted_index.kg/year) | 308, 355 |
| abstract_inverted_index.meadows, | 386 |
| abstract_inverted_index.official | 257, 276, 295, 535, 611 |
| abstract_inverted_index.reported | 796 |
| abstract_inverted_index.scenario | 846 |
| abstract_inverted_index.services | 416, 497, 566, 642, 705, 765, 873, 945, 1017, 1089, 1159 |
| abstract_inverted_index.sources, | 1125 |
| abstract_inverted_index.sources. | 432, 513, 582, 658, 721, 788, 889, 961, 1033, 1105 |
| abstract_inverted_index.specific | 442, 463 |
| abstract_inverted_index.studies. | 194 |
| abstract_inverted_index.(exposure | 20 |
| abstract_inverted_index.Bristol's | 228 |
| abstract_inverted_index.ClairCity | 125, 141, 192 |
| abstract_inverted_index.Council). | 130 |
| abstract_inverted_index.Emissions | 306, 353, 667, 730 |
| abstract_inverted_index.Guidebook | 607 |
| abstract_inverted_index.Household | 249, 268, 287 |
| abstract_inverted_index.Scenario: | 825, 844 |
| abstract_inverted_index.Shapefile | 199 |
| abstract_inverted_index.Workshop. | 852 |
| abstract_inverted_index.Workshop; | 840 |
| abstract_inverted_index.allocated | 672, 1126 |
| abstract_inverted_index.children) | 245 |
| abstract_inverted_index.database. | 349 |
| abstract_inverted_index.described | 542, 618, 681, 742, 921, 993, 1065, 1135 |
| abstract_inverted_index.developed | 111, 185 |
| abstract_inverted_index.document. | 545, 621, 684, 745, 924, 996, 1068, 1138 |
| abstract_inverted_index.effects), | 23 |
| abstract_inverted_index.emissions | 431, 446, 450, 467, 512, 581, 592, 657, 720, 787, 888, 960, 1032, 1104 |
| abstract_inverted_index.evaluated | 531, 602, 916, 988, 1060, 1130 |
| abstract_inverted_index.exposure; | 92 |
| abstract_inverted_index.framework | 110 |
| abstract_inverted_index.horizons: | 819 |
| abstract_inverted_index.household | 62, 229, 235, 238, 259, 278, 297 |
| abstract_inverted_index.inventory | 314, 361, 458, 606 |
| abstract_inverted_index.livestock | 365 |
| abstract_inverted_index.modelling | 162 |
| abstract_inverted_index.scenario, | 906, 978, 1050, 1121 |
| abstract_inverted_index.scenarios | 772 |
| abstract_inverted_index.sectores; | 79 |
| abstract_inverted_index.situation | 804 |
| abstract_inverted_index.structure | 239 |
| abstract_inverted_index.submitted | 149 |
| abstract_inverted_index.transport | 68 |
| abstract_inverted_index.vineyards | 387 |
| abstract_inverted_index.(household | 240 |
| abstract_inverted_index.Assessment | 31 |
| abstract_inverted_index.Emissions, | 1116 |
| abstract_inverted_index.Guidebook; | 459 |
| abstract_inverted_index.activities | 767 |
| abstract_inverted_index.assessment | 9, 48, 114, 133 |
| abstract_inverted_index.classified | 343, 390 |
| abstract_inverted_index.combustion | 470, 524, 595, 909, 981, 1053 |
| abstract_inverted_index.commercial | 75, 428, 473, 509, 527, 578, 598, 654, 717, 784, 885, 912, 957, 984, 1029, 1056, 1101 |
| abstract_inverted_index.consisting | 44 |
| abstract_inverted_index.delivered. | 159 |
| abstract_inverted_index.emissions, | 901, 973, 1045 |
| abstract_inverted_index.footprint, | 15 |
| abstract_inverted_index.footprint. | 103 |
| abstract_inverted_index.generation | 84 |
| abstract_inverted_index.industrial | 449 |
| abstract_inverted_index.integrated | 56 |
| abstract_inverted_index.integrates | 420, 501, 570, 646, 709, 776, 877, 949, 1021, 1093, 1163 |
| abstract_inverted_index.particular | 434, 515, 584, 660, 723, 891, 963, 1035, 1107 |
| abstract_inverted_index.population | 91, 230, 260, 279, 298 |
| abstract_inverted_index.resolution | 216, 320, 369 |
| abstract_inverted_index.three-time | 818 |
| abstract_inverted_index.undertaken | 50 |
| abstract_inverted_index.(emissions, | 13 |
| abstract_inverted_index.Stakeholder | 838 |
| abstract_inverted_index.agriculture | 363 |
| abstract_inverted_index.application | 6 |
| abstract_inverted_index.definition. | 773 |
| abstract_inverted_index.deliverable | 43, 151 |
| abstract_inverted_index.development | 410, 491, 560, 636, 699, 759, 867, 939, 1011, 1083, 1153 |
| abstract_inverted_index.industrial, | 73, 426, 507, 576, 652, 715, 782, 883, 955, 1027, 1099, 1169 |
| abstract_inverted_index.methodology | 538, 614, 677, 738, 792 |
| abstract_inverted_index.projections | 226, 252, 261, 271, 280, 290, 299 |
| abstract_inverted_index.statistical | 534, 610 |
| abstract_inverted_index.<strong>D5.5 | 30 |
| abstract_inverted_index.consumptions | 521 |
| abstract_inverted_index.residential, | 74, 427, 472, 508, 526, 577, 597, 653, 716, 783, 884, 911, 956, 983, 1028, 1055, 1100 |
| abstract_inverted_index.disaggregated | 328, 377 |
| abstract_inverted_index.encompassing: | 53 |
| abstract_inverted_index.environmental | 12 |
| abstract_inverted_index.institutional | 77, 430, 475, 511, 529, 580, 600, 656, 719, 786, 887, 914, 959, 986, 1031, 1058, 1103 |
| abstract_inverted_index.interventions | 808, 828 |
| abstract_inverted_index.environmental, | 117 |
| abstract_inverted_index.health-related | 28, 95 |
| abstract_inverted_index.<strong>Bristol | 195 |
| abstract_inverted_index.characteristics; | 65 |
| abstract_inverted_index.concentrations), | 18 |
| abstract_inverted_index.set</strong><br> | 164 |
| abstract_inverted_index.City</strong><br> | 36 |
| abstract_inverted_index."2_BRS_IRCI_baseline" | 620, 683, 744 |
| abstract_inverted_index."2_BRS_IRCI_baseline2" | 544 |
| abstract_inverted_index.<strong>specifications | 160 |
| abstract_inverted_index.Residential/Commercial | 413, 494, 563, 639, 702, 762, 870, 942, 1014, 1086, 1156 |
| abstract_inverted_index.shapefile</strong><br> | 196 |
| abstract_inverted_index."2_BRS_IRCI_BAU_Scenario" | 923, 995, 1067, 1137 |
| abstract_inverted_index.bristol_200mx200m.rar<br> | 198 |
| abstract_inverted_index.bristol_hh_energy_use_2025.xlsx<br> | 248 |
| abstract_inverted_index.bristol_hh_energy_use_2035.xlsx<br> | 267 |
| abstract_inverted_index.bristol_hh_energy_use_2050.xlsx<br> | 286 |
| abstract_inverted_index.ech.ma.15-fr1-wp5-irc-ed5.3.pdf<br> | 399 |
| abstract_inverted_index.module_specifications_report.pdf<br> | 166 |
| abstract_inverted_index.bristol_household_projections.xlsx<br> | 223 |
| abstract_inverted_index.<strong>2_BRS_IRCI_baseline</strong><br> | 397 |
| abstract_inverted_index.ech.ma.15-fr3-wp5-irc-future-ed5.pdf<br> | 748 |
| abstract_inverted_index.<strong>2_BRS_Natural_baseline</strong><br> | 303 |
| abstract_inverted_index.<strong>2_BRS_IRCI_BAU_Scenario</strong><br> | 746 |
| abstract_inverted_index.2_brs_irci_baseline_industry_area_emi.csv<br> | 624 |
| abstract_inverted_index.2_brs_irci_bau_industry_area_emi_2025.csv<br> | 1071 |
| abstract_inverted_index.2_brs_irci_bau_industry_area_emi_2035.csv<br> | 1141 |
| abstract_inverted_index.2_brs_irci_baseline_industry_point_emi.csv<br> | 687 |
| abstract_inverted_index.claircity_naturalemissions_brs_jan2019.pdf<br> | 305 |
| abstract_inverted_index.<strong>2_BRS_Agriculture_baseline</strong><br> | 350 |
| abstract_inverted_index.2_brs_irci_baseline_not_industry_area_emi.csv<br> | 548 |
| abstract_inverted_index.2_brs_irci_bau_not_industry_area_emi_2025.csv<br> | 855 |
| abstract_inverted_index.2_brs_irci_bau_not_industry_area_emi_2035.csv<br> | 927 |
| abstract_inverted_index.2_brs_irci_bau_not_industry_area_emi_2050.csv<br> | 999 |
| abstract_inverted_index.claircity_agricultureemissions_brs_jan2019.pdf<br> | 352 |
| abstract_inverted_index.2_brs_irci_baseline_not_industry_area_fuel_cons.csv<br> | 479 |
| abstract_inverted_index.<strong>1_BRS_Integrated_BAU_Scenarios_2025</strong><br> | 246 |
| abstract_inverted_index.<strong>1_BRS_Integrated_BAU_Scenarios_2035</strong><br> | 265 |
| abstract_inverted_index.<strong>1_BRS_Integrated_BAU_Scenarios_2050</strong><br> | 284 |
| abstract_inverted_index.<strong>2_BRS_IRCI_BAU_industry_area_emi_2025</strong><br> | 1069 |
| abstract_inverted_index.<strong>2_BRS_IRCI_BAU_industry_area_emi_2035</strong><br> | 1139 |
| abstract_inverted_index.<strong>2_BRS_IRCI_baseline_industry_area_emi</strong><br> | 622 |
| abstract_inverted_index.<strong>2_BRS_IRCI_baseline_industry_point_emi</strong><br> | 685 |
| abstract_inverted_index.<strong>1_BRS_Integrated_household_BAU_Scenarios</strong><br> | 221 |
| abstract_inverted_index.<strong>2_BRS_IRCI_BAU_not_industry_area_emi_2025</strong><br> | 853 |
| abstract_inverted_index.<strong>2_BRS_IRCI_BAU_not_industry_area_emi_2035</strong><br> | 925 |
| abstract_inverted_index.<strong>2_BRS_IRCI_BAU_not_industry_area_emi_2050</strong><br> | 997 |
| abstract_inverted_index.<strong>2_BRS_IRCI_baseline_not_industry_area_emi</strong><br> | 546 |
| abstract_inverted_index.d5.5-assessment-of-impacts-first-city_-revised-june-2020.pdf<br> | 38 |
| abstract_inverted_index.<strong>2_BRS_IRCI_baseline_not_industry_area_fuel_cons</strong><br> | 477 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 15 |
| citation_normalized_percentile |