DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.14887
As acquiring pixel-wise annotations of real-world images for semantic segmentation is a costly process, a model can instead be trained with more accessible synthetic data and adapted to real images without requiring their annotations. This process is studied in unsupervised domain adaptation (UDA). Even though a large number of methods propose new adaptation strategies, they are mostly based on outdated network architectures. As the influence of recent network architectures has not been systematically studied, we first benchmark different network architectures for UDA and newly reveal the potential of Transformers for UDA semantic segmentation. Based on the findings, we propose a novel UDA method, DAFormer. The network architecture of DAFormer consists of a Transformer encoder and a multi-level context-aware feature fusion decoder. It is enabled by three simple but crucial training strategies to stabilize the training and to avoid overfitting to the source domain: While (1) Rare Class Sampling on the source domain improves the quality of the pseudo-labels by mitigating the confirmation bias of self-training toward common classes, (2) a Thing-Class ImageNet Feature Distance and (3) a learning rate warmup promote feature transfer from ImageNet pretraining. DAFormer represents a major advance in UDA. It improves the state of the art by 10.8 mIoU for GTA-to-Cityscapes and 5.4 mIoU for Synthia-to-Cityscapes and enables learning even difficult classes such as train, bus, and truck well. The implementation is available at https://github.com/lhoyer/DAFormer.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.14887
- https://arxiv.org/pdf/2111.14887
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226229973
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226229973Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.14887Digital Object Identifier
- Title
-
DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-29Full publication date if available
- Authors
-
Lukas Hoyer, Dengxin Dai, Luc Van GoolList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.14887Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.14887Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.14887Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Segmentation, Overfitting, Transformer, Feature (linguistics), Feature learning, Machine learning, Network architecture, Encoder, Artificial neural network, Pattern recognition (psychology), Engineering, Computer network, Electrical engineering, Philosophy, Linguistics, Operating system, VoltageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226229973 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.14887 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.14887 |
| ids.openalex | https://openalex.org/W4226229973 |
| fwci | |
| type | preprint |
| title | DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9962000250816345 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8275916576385498 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.626317024230957 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C89600930 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5691790580749512 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[2].display_name | Segmentation |
| concepts[3].id | https://openalex.org/C22019652 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5456867218017578 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[3].display_name | Overfitting |
| concepts[4].id | https://openalex.org/C66322947 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5089578628540039 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[4].display_name | Transformer |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4908164441585541 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C59404180 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48378846049308777 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[6].display_name | Feature learning |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4471125304698944 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C193415008 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43268412351608276 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q639681 |
| concepts[8].display_name | Network architecture |
| concepts[9].id | https://openalex.org/C118505674 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42365872859954834 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[9].display_name | Encoder |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3868657052516937 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3224838972091675 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.08808150887489319 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08292913436889648 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| concepts[14].id | https://openalex.org/C119599485 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[14].display_name | Electrical engineering |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C165801399 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[18].display_name | Voltage |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8275916576385498 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.626317024230957 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/segmentation |
| keywords[2].score | 0.5691790580749512 |
| keywords[2].display_name | Segmentation |
| keywords[3].id | https://openalex.org/keywords/overfitting |
| keywords[3].score | 0.5456867218017578 |
| keywords[3].display_name | Overfitting |
| keywords[4].id | https://openalex.org/keywords/transformer |
| keywords[4].score | 0.5089578628540039 |
| keywords[4].display_name | Transformer |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.4908164441585541 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/feature-learning |
| keywords[6].score | 0.48378846049308777 |
| keywords[6].display_name | Feature learning |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.4471125304698944 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/network-architecture |
| keywords[8].score | 0.43268412351608276 |
| keywords[8].display_name | Network architecture |
| keywords[9].id | https://openalex.org/keywords/encoder |
| keywords[9].score | 0.42365872859954834 |
| keywords[9].display_name | Encoder |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.3868657052516937 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3224838972091675 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.08808150887489319 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/computer-network |
| keywords[13].score | 0.08292913436889648 |
| keywords[13].display_name | Computer network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.14887 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.14887 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.14887 |
| locations[1].id | doi:10.48550/arxiv.2111.14887 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2111.14887 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053328232 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7391-0676 |
| authorships[0].author.display_name | Lukas Hoyer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hoyer, Lukas |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5078838951 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5440-9678 |
| authorships[1].author.display_name | Dengxin Dai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dai, Dengxin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5001254143 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3445-5711 |
| authorships[2].author.display_name | Luc Van Gool |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Van Gool, Luc |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.14887 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-05T00:00:00 |
| display_name | DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W3009056573, https://openalex.org/W4297676672, https://openalex.org/W2922073769, https://openalex.org/W4281702477, https://openalex.org/W2490526372, https://openalex.org/W4376166922, https://openalex.org/W4378510483, https://openalex.org/W4221142204 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.14887 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.14887 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.14887 |
| primary_location.id | pmh:oai:arXiv.org:2111.14887 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.14887 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.14887 |
| publication_date | 2021-11-29 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 14, 45, 99, 111, 115, 169, 176, 188 |
| abstract_inverted_index.As | 0, 62 |
| abstract_inverted_index.It | 121, 193 |
| abstract_inverted_index.as | 217 |
| abstract_inverted_index.at | 227 |
| abstract_inverted_index.be | 18 |
| abstract_inverted_index.by | 124, 158, 200 |
| abstract_inverted_index.in | 38, 191 |
| abstract_inverted_index.is | 10, 36, 122, 225 |
| abstract_inverted_index.of | 4, 48, 65, 87, 107, 110, 155, 163, 197 |
| abstract_inverted_index.on | 58, 94, 148 |
| abstract_inverted_index.to | 27, 131, 136, 139 |
| abstract_inverted_index.we | 74, 97 |
| abstract_inverted_index.(1) | 144 |
| abstract_inverted_index.(2) | 168 |
| abstract_inverted_index.(3) | 175 |
| abstract_inverted_index.5.4 | 206 |
| abstract_inverted_index.The | 104, 223 |
| abstract_inverted_index.UDA | 81, 90, 101 |
| abstract_inverted_index.and | 25, 82, 114, 135, 174, 205, 210, 220 |
| abstract_inverted_index.are | 55 |
| abstract_inverted_index.art | 199 |
| abstract_inverted_index.but | 127 |
| abstract_inverted_index.can | 16 |
| abstract_inverted_index.for | 7, 80, 89, 203, 208 |
| abstract_inverted_index.has | 69 |
| abstract_inverted_index.new | 51 |
| abstract_inverted_index.not | 70 |
| abstract_inverted_index.the | 63, 85, 95, 133, 140, 149, 153, 156, 160, 195, 198 |
| abstract_inverted_index.10.8 | 201 |
| abstract_inverted_index.Even | 43 |
| abstract_inverted_index.Rare | 145 |
| abstract_inverted_index.This | 34 |
| abstract_inverted_index.UDA. | 192 |
| abstract_inverted_index.been | 71 |
| abstract_inverted_index.bias | 162 |
| abstract_inverted_index.bus, | 219 |
| abstract_inverted_index.data | 24 |
| abstract_inverted_index.even | 213 |
| abstract_inverted_index.from | 183 |
| abstract_inverted_index.mIoU | 202, 207 |
| abstract_inverted_index.more | 21 |
| abstract_inverted_index.rate | 178 |
| abstract_inverted_index.real | 28 |
| abstract_inverted_index.such | 216 |
| abstract_inverted_index.they | 54 |
| abstract_inverted_index.with | 20 |
| abstract_inverted_index.Based | 93 |
| abstract_inverted_index.Class | 146 |
| abstract_inverted_index.While | 143 |
| abstract_inverted_index.avoid | 137 |
| abstract_inverted_index.based | 57 |
| abstract_inverted_index.first | 75 |
| abstract_inverted_index.large | 46 |
| abstract_inverted_index.major | 189 |
| abstract_inverted_index.model | 15 |
| abstract_inverted_index.newly | 83 |
| abstract_inverted_index.novel | 100 |
| abstract_inverted_index.state | 196 |
| abstract_inverted_index.their | 32 |
| abstract_inverted_index.three | 125 |
| abstract_inverted_index.truck | 221 |
| abstract_inverted_index.well. | 222 |
| abstract_inverted_index.(UDA). | 42 |
| abstract_inverted_index.common | 166 |
| abstract_inverted_index.costly | 12 |
| abstract_inverted_index.domain | 40, 151 |
| abstract_inverted_index.fusion | 119 |
| abstract_inverted_index.images | 6, 29 |
| abstract_inverted_index.mostly | 56 |
| abstract_inverted_index.number | 47 |
| abstract_inverted_index.recent | 66 |
| abstract_inverted_index.reveal | 84 |
| abstract_inverted_index.simple | 126 |
| abstract_inverted_index.source | 141, 150 |
| abstract_inverted_index.though | 44 |
| abstract_inverted_index.toward | 165 |
| abstract_inverted_index.train, | 218 |
| abstract_inverted_index.warmup | 179 |
| abstract_inverted_index.Feature | 172 |
| abstract_inverted_index.adapted | 26 |
| abstract_inverted_index.advance | 190 |
| abstract_inverted_index.classes | 215 |
| abstract_inverted_index.crucial | 128 |
| abstract_inverted_index.domain: | 142 |
| abstract_inverted_index.enabled | 123 |
| abstract_inverted_index.enables | 211 |
| abstract_inverted_index.encoder | 113 |
| abstract_inverted_index.feature | 118, 181 |
| abstract_inverted_index.instead | 17 |
| abstract_inverted_index.method, | 102 |
| abstract_inverted_index.methods | 49 |
| abstract_inverted_index.network | 60, 67, 78, 105 |
| abstract_inverted_index.process | 35 |
| abstract_inverted_index.promote | 180 |
| abstract_inverted_index.propose | 50, 98 |
| abstract_inverted_index.quality | 154 |
| abstract_inverted_index.studied | 37 |
| abstract_inverted_index.trained | 19 |
| abstract_inverted_index.without | 30 |
| abstract_inverted_index.DAFormer | 108, 186 |
| abstract_inverted_index.Distance | 173 |
| abstract_inverted_index.ImageNet | 171, 184 |
| abstract_inverted_index.Sampling | 147 |
| abstract_inverted_index.classes, | 167 |
| abstract_inverted_index.consists | 109 |
| abstract_inverted_index.decoder. | 120 |
| abstract_inverted_index.improves | 152, 194 |
| abstract_inverted_index.learning | 177, 212 |
| abstract_inverted_index.outdated | 59 |
| abstract_inverted_index.process, | 13 |
| abstract_inverted_index.semantic | 8, 91 |
| abstract_inverted_index.studied, | 73 |
| abstract_inverted_index.training | 129, 134 |
| abstract_inverted_index.transfer | 182 |
| abstract_inverted_index.DAFormer. | 103 |
| abstract_inverted_index.acquiring | 1 |
| abstract_inverted_index.available | 226 |
| abstract_inverted_index.benchmark | 76 |
| abstract_inverted_index.different | 77 |
| abstract_inverted_index.difficult | 214 |
| abstract_inverted_index.findings, | 96 |
| abstract_inverted_index.influence | 64 |
| abstract_inverted_index.potential | 86 |
| abstract_inverted_index.requiring | 31 |
| abstract_inverted_index.stabilize | 132 |
| abstract_inverted_index.synthetic | 23 |
| abstract_inverted_index.accessible | 22 |
| abstract_inverted_index.adaptation | 41, 52 |
| abstract_inverted_index.mitigating | 159 |
| abstract_inverted_index.pixel-wise | 2 |
| abstract_inverted_index.real-world | 5 |
| abstract_inverted_index.represents | 187 |
| abstract_inverted_index.strategies | 130 |
| abstract_inverted_index.Thing-Class | 170 |
| abstract_inverted_index.Transformer | 112 |
| abstract_inverted_index.annotations | 3 |
| abstract_inverted_index.multi-level | 116 |
| abstract_inverted_index.overfitting | 138 |
| abstract_inverted_index.strategies, | 53 |
| abstract_inverted_index.Transformers | 88 |
| abstract_inverted_index.annotations. | 33 |
| abstract_inverted_index.architecture | 106 |
| abstract_inverted_index.confirmation | 161 |
| abstract_inverted_index.pretraining. | 185 |
| abstract_inverted_index.segmentation | 9 |
| abstract_inverted_index.unsupervised | 39 |
| abstract_inverted_index.architectures | 68, 79 |
| abstract_inverted_index.context-aware | 117 |
| abstract_inverted_index.pseudo-labels | 157 |
| abstract_inverted_index.segmentation. | 92 |
| abstract_inverted_index.self-training | 164 |
| abstract_inverted_index.architectures. | 61 |
| abstract_inverted_index.implementation | 224 |
| abstract_inverted_index.systematically | 72 |
| abstract_inverted_index.GTA-to-Cityscapes | 204 |
| abstract_inverted_index.Synthia-to-Cityscapes | 209 |
| abstract_inverted_index.https://github.com/lhoyer/DAFormer. | 228 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |