DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.ecoinf.2025.103067
Insect pest detection plays a crucial role in agricultural production for accurate and early pest control, thus significantly reducing crop damage and increasing yields. However, currently the small size and multi-scale characteristics of insect pests pose significant challenges for accurate object detection using computer vision technology. To address this issue, we propose a novel framework called DAMI-YOLOv8l to detect pest in images collected by a light-trapping device. The DAMI-YOLOv8l model integrates three key innovations: the Depth-wise Multi-Scale Convolution (DMC) module, the Attentional Scale Sequence Fusion with a P2 detection layer (ASFP2) neck structure, and a novel bounding box regression loss function named Minimum Point Distance inner Intersection over Union (MPDinner-IoU). The DMC module improves multi-scale feature extraction to enable the effective capture and merging of features across different detection scales while reducing network parameters. The ASF-P2 neck structure enhances the fusion of multi-scale features while preserving critical local information related to small-scale features. Additionally, the MPDinner-IoU loss function optimizes feature measurement for small insect pest datasets by introducing geometric correction capabilities. By leveraging these innovations, the results demonstrate that the proposed framework improves many metrics, such as mAP50 from 74.5 % to 78.2 %, mAP50:95 from 52.5 % to 57.3 %, and FPS from 109.89 to 121.12, compared with those of YOLOv8l model on the proposed LP24 dataset. Furthermore, we validate its robustness on two other public datasets related to small objects, Pest24 and VisDrone2019.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ecoinf.2025.103067
- OA Status
- gold
- Cited By
- 5
- References
- 71
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407312844
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407312844Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ecoinf.2025.103067Digital Object Identifier
- Title
-
DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-10Full publication date if available
- Authors
-
Xiao Chen, Xinting Yang, Huan Hu, Tianjun Li, Zijie Zhou, Wenyong LiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ecoinf.2025.103067Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ecoinf.2025.103067Direct OA link when available
- Concepts
-
Trapping, PEST analysis, Insect pest, Scale (ratio), Computer science, Ecology, Biology, Geography, Cartography, Botany, AgronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5Per-year citation counts (last 5 years)
- References (count)
-
71Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407312844 |
|---|---|
| doi | https://doi.org/10.1016/j.ecoinf.2025.103067 |
| ids.doi | https://doi.org/10.1016/j.ecoinf.2025.103067 |
| ids.openalex | https://openalex.org/W4407312844 |
| fwci | 22.27160976 |
| type | article |
| title | DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring |
| biblio.issue | |
| biblio.volume | 86 |
| biblio.last_page | 103067 |
| biblio.first_page | 103067 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T12321 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9864000082015991 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1109 |
| topics[1].subfield.display_name | Insect Science |
| topics[1].display_name | Insect Pheromone Research and Control |
| topics[2].id | https://openalex.org/T11393 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9707000255584717 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Biosensors and Analytical Detection |
| is_xpac | False |
| apc_list.value | 2510 |
| apc_list.currency | USD |
| apc_list.value_usd | 2510 |
| apc_paid.value | 2510 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2510 |
| concepts[0].id | https://openalex.org/C2777924906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6614314317703247 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q34168 |
| concepts[0].display_name | Trapping |
| concepts[1].id | https://openalex.org/C22508944 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5814875960350037 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q568174 |
| concepts[1].display_name | PEST analysis |
| concepts[2].id | https://openalex.org/C2994141551 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5713964700698853 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5333460 |
| concepts[2].display_name | Insect pest |
| concepts[3].id | https://openalex.org/C2778755073 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5329457521438599 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[3].display_name | Scale (ratio) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3934626281261444 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C18903297 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32135289907455444 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[5].display_name | Ecology |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.265352725982666 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.222387433052063 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C58640448 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10692083835601807 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[8].display_name | Cartography |
| concepts[9].id | https://openalex.org/C59822182 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07834497094154358 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[9].display_name | Botany |
| concepts[10].id | https://openalex.org/C6557445 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0668998658657074 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[10].display_name | Agronomy |
| keywords[0].id | https://openalex.org/keywords/trapping |
| keywords[0].score | 0.6614314317703247 |
| keywords[0].display_name | Trapping |
| keywords[1].id | https://openalex.org/keywords/pest-analysis |
| keywords[1].score | 0.5814875960350037 |
| keywords[1].display_name | PEST analysis |
| keywords[2].id | https://openalex.org/keywords/insect-pest |
| keywords[2].score | 0.5713964700698853 |
| keywords[2].display_name | Insect pest |
| keywords[3].id | https://openalex.org/keywords/scale |
| keywords[3].score | 0.5329457521438599 |
| keywords[3].display_name | Scale (ratio) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3934626281261444 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/ecology |
| keywords[5].score | 0.32135289907455444 |
| keywords[5].display_name | Ecology |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.265352725982666 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.222387433052063 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/cartography |
| keywords[8].score | 0.10692083835601807 |
| keywords[8].display_name | Cartography |
| keywords[9].id | https://openalex.org/keywords/botany |
| keywords[9].score | 0.07834497094154358 |
| keywords[9].display_name | Botany |
| keywords[10].id | https://openalex.org/keywords/agronomy |
| keywords[10].score | 0.0668998658657074 |
| keywords[10].display_name | Agronomy |
| language | en |
| locations[0].id | doi:10.1016/j.ecoinf.2025.103067 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195809937 |
| locations[0].source.issn | 1574-9541, 1878-0512 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1574-9541 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Ecological Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Ecological Informatics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ecoinf.2025.103067 |
| locations[1].id | pmh:oai:doaj.org/article:d2802080db6e4dc18df994924a461c6d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Ecological Informatics, Vol 86, Iss , Pp 103067- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d2802080db6e4dc18df994924a461c6d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5021218347 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4231-6372 |
| authorships[0].author.display_name | Xiao Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiao Chen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5019280085 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9042-1815 |
| authorships[1].author.display_name | Xinting Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xinting Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100630091 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1317-5470 |
| authorships[2].author.display_name | Huan Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huan Hu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108088156 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tianjun Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tianjun Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5012316104 |
| authorships[4].author.orcid | https://orcid.org/0009-0004-3735-8564 |
| authorships[4].author.display_name | Zijie Zhou |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zijie Zhou |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101607282 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0029-8313 |
| authorships[5].author.display_name | Wenyong Li |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wenyong Li |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ecoinf.2025.103067 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-08T23:21:52.890332 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2359953443, https://openalex.org/W2394218254, https://openalex.org/W2348911871, https://openalex.org/W2185476965, https://openalex.org/W2359364410, https://openalex.org/W2347829105, https://openalex.org/W2376093046, https://openalex.org/W2738171604, https://openalex.org/W2143969487, https://openalex.org/W2356593688 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.ecoinf.2025.103067 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195809937 |
| best_oa_location.source.issn | 1574-9541, 1878-0512 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1574-9541 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Ecological Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Ecological Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ecoinf.2025.103067 |
| primary_location.id | doi:10.1016/j.ecoinf.2025.103067 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195809937 |
| primary_location.source.issn | 1574-9541, 1878-0512 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1574-9541 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Ecological Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Ecological Informatics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ecoinf.2025.103067 |
| publication_date | 2025-02-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6768955607, https://openalex.org/W4285147157, https://openalex.org/W4392190091, https://openalex.org/W4386257775, https://openalex.org/W4401433012, https://openalex.org/W3011928542, https://openalex.org/W4392808729, https://openalex.org/W2801835996, https://openalex.org/W3032016692, https://openalex.org/W6803003410, https://openalex.org/W3206956589, https://openalex.org/W6839991794, https://openalex.org/W1861492603, https://openalex.org/W6798844660, https://openalex.org/W2938719104, https://openalex.org/W6803677459, https://openalex.org/W4396624146, https://openalex.org/W4284713930, https://openalex.org/W6868200122, https://openalex.org/W6854538829, https://openalex.org/W4401628679, https://openalex.org/W4309475808, https://openalex.org/W4360980444, https://openalex.org/W2067361549, https://openalex.org/W3085443879, https://openalex.org/W639708223, https://openalex.org/W4386416724, https://openalex.org/W4387826137, https://openalex.org/W4386906292, https://openalex.org/W3001553836, https://openalex.org/W3042482584, https://openalex.org/W6849520326, https://openalex.org/W6875841610, https://openalex.org/W4390100012, https://openalex.org/W4307372257, https://openalex.org/W4319922474, https://openalex.org/W6876307321, https://openalex.org/W4406549672, https://openalex.org/W3166596315, https://openalex.org/W4206730314, https://openalex.org/W4385760871, https://openalex.org/W4313275642, https://openalex.org/W6770715449, https://openalex.org/W1583837637, https://openalex.org/W4297775537, https://openalex.org/W4300881649, https://openalex.org/W4396545724, https://openalex.org/W4406235068, https://openalex.org/W4293584584, https://openalex.org/W4402754006, https://openalex.org/W3035396860, https://openalex.org/W4281790833, https://openalex.org/W3138516171, https://openalex.org/W2989604896, https://openalex.org/W3122239467, https://openalex.org/W4406463562, https://openalex.org/W4297676427, https://openalex.org/W4398810114, https://openalex.org/W4384652394, https://openalex.org/W3018757597, https://openalex.org/W4318255578, https://openalex.org/W4403770406, https://openalex.org/W4283659321, https://openalex.org/W4312349930, https://openalex.org/W4232880020, https://openalex.org/W4404078847, https://openalex.org/W4398784535, https://openalex.org/W4386076325, https://openalex.org/W4388513214, https://openalex.org/W2997747012, https://openalex.org/W2964241181 |
| referenced_works_count | 71 |
| abstract_inverted_index.% | 190, 197 |
| abstract_inverted_index.a | 4, 52, 64, 86, 94 |
| abstract_inverted_index.%, | 193, 200 |
| abstract_inverted_index.By | 171 |
| abstract_inverted_index.P2 | 87 |
| abstract_inverted_index.To | 46 |
| abstract_inverted_index.as | 186 |
| abstract_inverted_index.by | 63, 166 |
| abstract_inverted_index.in | 7, 60 |
| abstract_inverted_index.of | 32, 124, 141, 210 |
| abstract_inverted_index.on | 213, 223 |
| abstract_inverted_index.to | 57, 117, 150, 191, 198, 205, 229 |
| abstract_inverted_index.we | 50, 219 |
| abstract_inverted_index.DMC | 111 |
| abstract_inverted_index.FPS | 202 |
| abstract_inverted_index.The | 67, 110, 134 |
| abstract_inverted_index.and | 12, 21, 29, 93, 122, 201, 233 |
| abstract_inverted_index.box | 97 |
| abstract_inverted_index.for | 10, 38, 161 |
| abstract_inverted_index.its | 221 |
| abstract_inverted_index.key | 72 |
| abstract_inverted_index.the | 26, 74, 80, 119, 139, 154, 175, 179, 214 |
| abstract_inverted_index.two | 224 |
| abstract_inverted_index.52.5 | 196 |
| abstract_inverted_index.57.3 | 199 |
| abstract_inverted_index.74.5 | 189 |
| abstract_inverted_index.78.2 | 192 |
| abstract_inverted_index.LP24 | 216 |
| abstract_inverted_index.crop | 19 |
| abstract_inverted_index.from | 188, 195, 203 |
| abstract_inverted_index.loss | 99, 156 |
| abstract_inverted_index.many | 183 |
| abstract_inverted_index.neck | 91, 136 |
| abstract_inverted_index.over | 107 |
| abstract_inverted_index.pest | 1, 14, 59, 164 |
| abstract_inverted_index.pose | 35 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.size | 28 |
| abstract_inverted_index.such | 185 |
| abstract_inverted_index.that | 178 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.thus | 16 |
| abstract_inverted_index.with | 85, 208 |
| abstract_inverted_index.(DMC) | 78 |
| abstract_inverted_index.Point | 103 |
| abstract_inverted_index.Scale | 82 |
| abstract_inverted_index.Union | 108 |
| abstract_inverted_index.early | 13 |
| abstract_inverted_index.inner | 105 |
| abstract_inverted_index.layer | 89 |
| abstract_inverted_index.local | 147 |
| abstract_inverted_index.mAP50 | 187 |
| abstract_inverted_index.model | 69, 212 |
| abstract_inverted_index.named | 101 |
| abstract_inverted_index.novel | 53, 95 |
| abstract_inverted_index.other | 225 |
| abstract_inverted_index.pests | 34 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.small | 27, 162, 230 |
| abstract_inverted_index.these | 173 |
| abstract_inverted_index.those | 209 |
| abstract_inverted_index.three | 71 |
| abstract_inverted_index.using | 42 |
| abstract_inverted_index.while | 130, 144 |
| abstract_inverted_index.109.89 | 204 |
| abstract_inverted_index.ASF-P2 | 135 |
| abstract_inverted_index.Fusion | 84 |
| abstract_inverted_index.Insect | 0 |
| abstract_inverted_index.Pest24 | 232 |
| abstract_inverted_index.across | 126 |
| abstract_inverted_index.called | 55 |
| abstract_inverted_index.damage | 20 |
| abstract_inverted_index.detect | 58 |
| abstract_inverted_index.enable | 118 |
| abstract_inverted_index.fusion | 140 |
| abstract_inverted_index.images | 61 |
| abstract_inverted_index.insect | 33, 163 |
| abstract_inverted_index.issue, | 49 |
| abstract_inverted_index.module | 112 |
| abstract_inverted_index.object | 40 |
| abstract_inverted_index.public | 226 |
| abstract_inverted_index.scales | 129 |
| abstract_inverted_index.vision | 44 |
| abstract_inverted_index.(ASFP2) | 90 |
| abstract_inverted_index.121.12, | 206 |
| abstract_inverted_index.Minimum | 102 |
| abstract_inverted_index.YOLOv8l | 211 |
| abstract_inverted_index.address | 47 |
| abstract_inverted_index.capture | 121 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.device. | 66 |
| abstract_inverted_index.feature | 115, 159 |
| abstract_inverted_index.merging | 123 |
| abstract_inverted_index.module, | 79 |
| abstract_inverted_index.network | 132 |
| abstract_inverted_index.propose | 51 |
| abstract_inverted_index.related | 149, 228 |
| abstract_inverted_index.results | 176 |
| abstract_inverted_index.yields. | 23 |
| abstract_inverted_index.Distance | 104 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.Sequence | 83 |
| abstract_inverted_index.accurate | 11, 39 |
| abstract_inverted_index.bounding | 96 |
| abstract_inverted_index.compared | 207 |
| abstract_inverted_index.computer | 43 |
| abstract_inverted_index.control, | 15 |
| abstract_inverted_index.critical | 146 |
| abstract_inverted_index.dataset. | 217 |
| abstract_inverted_index.datasets | 165, 227 |
| abstract_inverted_index.enhances | 138 |
| abstract_inverted_index.features | 125, 143 |
| abstract_inverted_index.function | 100, 157 |
| abstract_inverted_index.improves | 113, 182 |
| abstract_inverted_index.mAP50:95 | 194 |
| abstract_inverted_index.metrics, | 184 |
| abstract_inverted_index.objects, | 231 |
| abstract_inverted_index.proposed | 180, 215 |
| abstract_inverted_index.reducing | 18, 131 |
| abstract_inverted_index.validate | 220 |
| abstract_inverted_index.collected | 62 |
| abstract_inverted_index.currently | 25 |
| abstract_inverted_index.detection | 2, 41, 88, 128 |
| abstract_inverted_index.different | 127 |
| abstract_inverted_index.effective | 120 |
| abstract_inverted_index.features. | 152 |
| abstract_inverted_index.framework | 54, 181 |
| abstract_inverted_index.geometric | 168 |
| abstract_inverted_index.optimizes | 158 |
| abstract_inverted_index.structure | 137 |
| abstract_inverted_index.Depth-wise | 75 |
| abstract_inverted_index.challenges | 37 |
| abstract_inverted_index.correction | 169 |
| abstract_inverted_index.extraction | 116 |
| abstract_inverted_index.increasing | 22 |
| abstract_inverted_index.integrates | 70 |
| abstract_inverted_index.leveraging | 172 |
| abstract_inverted_index.preserving | 145 |
| abstract_inverted_index.production | 9 |
| abstract_inverted_index.regression | 98 |
| abstract_inverted_index.robustness | 222 |
| abstract_inverted_index.structure, | 92 |
| abstract_inverted_index.Attentional | 81 |
| abstract_inverted_index.Convolution | 77 |
| abstract_inverted_index.Multi-Scale | 76 |
| abstract_inverted_index.demonstrate | 177 |
| abstract_inverted_index.information | 148 |
| abstract_inverted_index.introducing | 167 |
| abstract_inverted_index.measurement | 160 |
| abstract_inverted_index.multi-scale | 30, 114, 142 |
| abstract_inverted_index.parameters. | 133 |
| abstract_inverted_index.significant | 36 |
| abstract_inverted_index.small-scale | 151 |
| abstract_inverted_index.technology. | 45 |
| abstract_inverted_index.DAMI-YOLOv8l | 56, 68 |
| abstract_inverted_index.Furthermore, | 218 |
| abstract_inverted_index.Intersection | 106 |
| abstract_inverted_index.MPDinner-IoU | 155 |
| abstract_inverted_index.agricultural | 8 |
| abstract_inverted_index.innovations, | 174 |
| abstract_inverted_index.innovations: | 73 |
| abstract_inverted_index.Additionally, | 153 |
| abstract_inverted_index.VisDrone2019. | 234 |
| abstract_inverted_index.capabilities. | 170 |
| abstract_inverted_index.significantly | 17 |
| abstract_inverted_index.light-trapping | 65 |
| abstract_inverted_index.(MPDinner-IoU). | 109 |
| abstract_inverted_index.characteristics | 31 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.98628322 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |