DANI: fast diffusion aware network inference with preserving topological structure property Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-024-82286-x
Numerous algorithms have been proposed to infer the underlying structure of the social networks via observed information propagation. The previously proposed algorithms concentrate on inferring accurate links and neglect preserving the essential topological properties of the underlying social networks. In this paper, we propose a novel method called DANI to infer the underlying network while preserving its structural properties. DANI is constructed using the Markov transition matrix, which is derived from the analysis of time series cascades and the observation of node-node similarity in cascade behavior from a structural perspective. The presented method has linear time complexity. This means that it increases with the number of nodes, cascades, and the square of the average length of cascades. Moreover, its distributed version in the MapReduce framework is scalable. We applied the proposed approach to both real and synthetic networks. The experimental results indicated DANI exhibits higher accuracy and lower run time compared to well-known network inference methods. Furthermore, DANI preserves essential structural properties such as modular structure, degree distribution, connected components, density, and clustering coefficients. Our source code is available on GitHub ( https://github.com/AryanAhadinia/DANI ).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-024-82286-x
- https://www.nature.com/articles/s41598-024-82286-x.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405843671
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405843671Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-024-82286-xDigital Object Identifier
- Title
-
DANI: fast diffusion aware network inference with preserving topological structure propertyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-28Full publication date if available
- Authors
-
Maryam Ramezani, Aryan Ahadinia, Erfan Farhadi, Hamid R. RabieeList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-024-82286-xPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-024-82286-x.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-024-82286-x.pdfDirect OA link when available
- Concepts
-
Computer science, Node (physics), Inference, Scalability, Cluster analysis, Markov chain, Clustering coefficient, Complex network, Theoretical computer science, Algorithm, Topology (electrical circuits), Data mining, Artificial intelligence, Mathematics, Machine learning, Engineering, Combinatorics, Structural engineering, World Wide Web, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405843671 |
|---|---|
| doi | https://doi.org/10.1038/s41598-024-82286-x |
| ids.doi | https://doi.org/10.1038/s41598-024-82286-x |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39730659 |
| ids.openalex | https://openalex.org/W4405843671 |
| fwci | 1.08467083 |
| type | article |
| title | DANI: fast diffusion aware network inference with preserving topological structure property |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 31053 |
| biblio.first_page | 31053 |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| topics[1].id | https://openalex.org/T12592 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Opinion Dynamics and Social Influence |
| topics[2].id | https://openalex.org/T10241 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9894999861717224 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Functional Brain Connectivity Studies |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7788964509963989 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C62611344 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6180195212364197 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[1].display_name | Node (physics) |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.605888307094574 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C48044578 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5415875911712646 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[3].display_name | Scalability |
| concepts[4].id | https://openalex.org/C73555534 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49504104256629944 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[4].display_name | Cluster analysis |
| concepts[5].id | https://openalex.org/C98763669 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4786352217197418 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[5].display_name | Markov chain |
| concepts[6].id | https://openalex.org/C22047676 |
| concepts[6].level | 3 |
| concepts[6].score | 0.43175429105758667 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q898680 |
| concepts[6].display_name | Clustering coefficient |
| concepts[7].id | https://openalex.org/C34947359 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43072134256362915 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q665189 |
| concepts[7].display_name | Complex network |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4033506512641907 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40258270502090454 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C184720557 |
| concepts[10].level | 2 |
| concepts[10].score | 0.37688401341438293 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[10].display_name | Topology (electrical circuits) |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36060667037963867 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.23111951351165771 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.19293895363807678 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15740695595741272 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C114614502 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[16].display_name | Combinatorics |
| concepts[17].id | https://openalex.org/C66938386 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[17].display_name | Structural engineering |
| concepts[18].id | https://openalex.org/C136764020 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[18].display_name | World Wide Web |
| concepts[19].id | https://openalex.org/C77088390 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[19].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7788964509963989 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/node |
| keywords[1].score | 0.6180195212364197 |
| keywords[1].display_name | Node (physics) |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.605888307094574 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/scalability |
| keywords[3].score | 0.5415875911712646 |
| keywords[3].display_name | Scalability |
| keywords[4].id | https://openalex.org/keywords/cluster-analysis |
| keywords[4].score | 0.49504104256629944 |
| keywords[4].display_name | Cluster analysis |
| keywords[5].id | https://openalex.org/keywords/markov-chain |
| keywords[5].score | 0.4786352217197418 |
| keywords[5].display_name | Markov chain |
| keywords[6].id | https://openalex.org/keywords/clustering-coefficient |
| keywords[6].score | 0.43175429105758667 |
| keywords[6].display_name | Clustering coefficient |
| keywords[7].id | https://openalex.org/keywords/complex-network |
| keywords[7].score | 0.43072134256362915 |
| keywords[7].display_name | Complex network |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.4033506512641907 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.40258270502090454 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/topology |
| keywords[10].score | 0.37688401341438293 |
| keywords[10].display_name | Topology (electrical circuits) |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.36060667037963867 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.23111951351165771 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.19293895363807678 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.15740695595741272 |
| keywords[14].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1038/s41598-024-82286-x |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-024-82286-x.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-024-82286-x |
| locations[1].id | pmid:39730659 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39730659 |
| locations[2].id | pmh:oai:doaj.org/article:23383e5085414429a9ef295bd16357df |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 14, Iss 1, Pp 1-28 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/23383e5085414429a9ef295bd16357df |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11680994 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11680994 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5101820168 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5044-2526 |
| authorships[0].author.display_name | Maryam Ramezani |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I133529467 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I133529467 |
| authorships[0].institutions[0].ror | https://ror.org/024c2fq17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I133529467 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | Sharif University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Maryam Ramezani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| authorships[1].author.id | https://openalex.org/A5044549285 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-1768-5511 |
| authorships[1].author.display_name | Aryan Ahadinia |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I133529467 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I133529467 |
| authorships[1].institutions[0].ror | https://ror.org/024c2fq17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I133529467 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Sharif University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Aryan Ahadinia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| authorships[2].author.id | https://openalex.org/A5005945495 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1640-403X |
| authorships[2].author.display_name | Erfan Farhadi |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I133529467 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| authorships[2].institutions[0].id | https://openalex.org/I133529467 |
| authorships[2].institutions[0].ror | https://ror.org/024c2fq17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I133529467 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | Sharif University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Erfan Farhadi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| authorships[3].author.id | https://openalex.org/A5063512925 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9835-4493 |
| authorships[3].author.display_name | Hamid R. Rabiee |
| authorships[3].countries | IR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I133529467 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| authorships[3].institutions[0].id | https://openalex.org/I133529467 |
| authorships[3].institutions[0].ror | https://ror.org/024c2fq17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I133529467 |
| authorships[3].institutions[0].country_code | IR |
| authorships[3].institutions[0].display_name | Sharif University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hamid R. Rabiee |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Engineering, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-024-82286-x.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DANI: fast diffusion aware network inference with preserving topological structure property |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W2021654076, https://openalex.org/W2088831353, https://openalex.org/W2129331923, https://openalex.org/W2349587087, https://openalex.org/W4287816523, https://openalex.org/W3015999728, https://openalex.org/W1979477222, https://openalex.org/W2071421102, https://openalex.org/W2095569089, https://openalex.org/W1968846251 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-024-82286-x |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-024-82286-x.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-024-82286-x |
| primary_location.id | doi:10.1038/s41598-024-82286-x |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-024-82286-x.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-024-82286-x |
| publication_date | 2024-12-28 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1996816151, https://openalex.org/W3124489302, https://openalex.org/W3142588439, https://openalex.org/W2056951373, https://openalex.org/W4225506584, https://openalex.org/W2101196063, https://openalex.org/W4367046817, https://openalex.org/W4292081303, https://openalex.org/W2111656864, https://openalex.org/W2097565406, https://openalex.org/W2027135291, https://openalex.org/W1495750374, https://openalex.org/W3022269570, https://openalex.org/W2529121416, https://openalex.org/W3028571922, https://openalex.org/W2128914432, https://openalex.org/W3021723224, https://openalex.org/W3030034588, https://openalex.org/W2547263067, https://openalex.org/W3021881484, https://openalex.org/W6634728636, https://openalex.org/W2325846041, https://openalex.org/W2910005594, https://openalex.org/W4312856860, https://openalex.org/W4394862701, https://openalex.org/W2914088024, https://openalex.org/W2023019696, https://openalex.org/W1600293573, https://openalex.org/W2065996638, https://openalex.org/W2047013860, https://openalex.org/W2156716308, https://openalex.org/W2542758684, https://openalex.org/W6718911965, https://openalex.org/W1568832590, https://openalex.org/W1970301364, https://openalex.org/W4213009331, https://openalex.org/W1546155242, https://openalex.org/W2170714499, https://openalex.org/W4366519807, https://openalex.org/W1991408655, https://openalex.org/W2469279958, https://openalex.org/W2127492100, https://openalex.org/W2962735465 |
| referenced_works_count | 43 |
| abstract_inverted_index.( | 181 |
| abstract_inverted_index.a | 44, 87 |
| abstract_inverted_index.). | 183 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.We | 127 |
| abstract_inverted_index.as | 163 |
| abstract_inverted_index.in | 83, 121 |
| abstract_inverted_index.is | 60, 68, 125, 177 |
| abstract_inverted_index.it | 100 |
| abstract_inverted_index.of | 10, 34, 73, 80, 105, 111, 115 |
| abstract_inverted_index.on | 23, 179 |
| abstract_inverted_index.to | 5, 49, 132, 151 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.Our | 174 |
| abstract_inverted_index.The | 18, 90, 138 |
| abstract_inverted_index.and | 27, 77, 108, 135, 146, 171 |
| abstract_inverted_index.has | 93 |
| abstract_inverted_index.its | 56, 118 |
| abstract_inverted_index.run | 148 |
| abstract_inverted_index.the | 7, 11, 30, 35, 51, 63, 71, 78, 103, 109, 112, 122, 129 |
| abstract_inverted_index.via | 14 |
| abstract_inverted_index.DANI | 48, 59, 142, 157 |
| abstract_inverted_index.This | 97 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.both | 133 |
| abstract_inverted_index.code | 176 |
| abstract_inverted_index.from | 70, 86 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.real | 134 |
| abstract_inverted_index.such | 162 |
| abstract_inverted_index.that | 99 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.time | 74, 95, 149 |
| abstract_inverted_index.with | 102 |
| abstract_inverted_index.infer | 6, 50 |
| abstract_inverted_index.links | 26 |
| abstract_inverted_index.lower | 147 |
| abstract_inverted_index.means | 98 |
| abstract_inverted_index.novel | 45 |
| abstract_inverted_index.using | 62 |
| abstract_inverted_index.which | 67 |
| abstract_inverted_index.while | 54 |
| abstract_inverted_index.GitHub | 180 |
| abstract_inverted_index.Markov | 64 |
| abstract_inverted_index.called | 47 |
| abstract_inverted_index.degree | 166 |
| abstract_inverted_index.higher | 144 |
| abstract_inverted_index.length | 114 |
| abstract_inverted_index.linear | 94 |
| abstract_inverted_index.method | 46, 92 |
| abstract_inverted_index.nodes, | 106 |
| abstract_inverted_index.number | 104 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.series | 75 |
| abstract_inverted_index.social | 12, 37 |
| abstract_inverted_index.source | 175 |
| abstract_inverted_index.square | 110 |
| abstract_inverted_index.applied | 128 |
| abstract_inverted_index.average | 113 |
| abstract_inverted_index.cascade | 84 |
| abstract_inverted_index.derived | 69 |
| abstract_inverted_index.matrix, | 66 |
| abstract_inverted_index.modular | 164 |
| abstract_inverted_index.neglect | 28 |
| abstract_inverted_index.network | 53, 153 |
| abstract_inverted_index.propose | 43 |
| abstract_inverted_index.results | 140 |
| abstract_inverted_index.version | 120 |
| abstract_inverted_index.Numerous | 0 |
| abstract_inverted_index.accuracy | 145 |
| abstract_inverted_index.accurate | 25 |
| abstract_inverted_index.analysis | 72 |
| abstract_inverted_index.approach | 131 |
| abstract_inverted_index.behavior | 85 |
| abstract_inverted_index.cascades | 76 |
| abstract_inverted_index.compared | 150 |
| abstract_inverted_index.density, | 170 |
| abstract_inverted_index.exhibits | 143 |
| abstract_inverted_index.methods. | 155 |
| abstract_inverted_index.networks | 13 |
| abstract_inverted_index.observed | 15 |
| abstract_inverted_index.proposed | 4, 20, 130 |
| abstract_inverted_index.MapReduce | 123 |
| abstract_inverted_index.Moreover, | 117 |
| abstract_inverted_index.available | 178 |
| abstract_inverted_index.cascades, | 107 |
| abstract_inverted_index.cascades. | 116 |
| abstract_inverted_index.connected | 168 |
| abstract_inverted_index.essential | 31, 159 |
| abstract_inverted_index.framework | 124 |
| abstract_inverted_index.increases | 101 |
| abstract_inverted_index.indicated | 141 |
| abstract_inverted_index.inference | 154 |
| abstract_inverted_index.inferring | 24 |
| abstract_inverted_index.networks. | 38, 137 |
| abstract_inverted_index.node-node | 81 |
| abstract_inverted_index.presented | 91 |
| abstract_inverted_index.preserves | 158 |
| abstract_inverted_index.scalable. | 126 |
| abstract_inverted_index.structure | 9 |
| abstract_inverted_index.synthetic | 136 |
| abstract_inverted_index.algorithms | 1, 21 |
| abstract_inverted_index.clustering | 172 |
| abstract_inverted_index.preserving | 29, 55 |
| abstract_inverted_index.previously | 19 |
| abstract_inverted_index.properties | 33, 161 |
| abstract_inverted_index.similarity | 82 |
| abstract_inverted_index.structural | 57, 88, 160 |
| abstract_inverted_index.structure, | 165 |
| abstract_inverted_index.transition | 65 |
| abstract_inverted_index.underlying | 8, 36, 52 |
| abstract_inverted_index.well-known | 152 |
| abstract_inverted_index.complexity. | 96 |
| abstract_inverted_index.components, | 169 |
| abstract_inverted_index.concentrate | 22 |
| abstract_inverted_index.constructed | 61 |
| abstract_inverted_index.distributed | 119 |
| abstract_inverted_index.information | 16 |
| abstract_inverted_index.observation | 79 |
| abstract_inverted_index.properties. | 58 |
| abstract_inverted_index.topological | 32 |
| abstract_inverted_index.Furthermore, | 156 |
| abstract_inverted_index.experimental | 139 |
| abstract_inverted_index.perspective. | 89 |
| abstract_inverted_index.propagation. | 17 |
| abstract_inverted_index.coefficients. | 173 |
| abstract_inverted_index.distribution, | 167 |
| abstract_inverted_index.https://github.com/AryanAhadinia/DANI | 182 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.74215678 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |