DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.04472
Recent advancements in slow thinking reasoning models have shown exceptional performance in complex reasoning tasks. However, these models often exhibit overthinking (generating redundant reasoning steps for simple problems), leading to excessive computational resource usage. While current mitigation strategies uniformly reduce reasoning tokens, they risk degrading performance on challenging tasks that require extended reasoning. This paper introduces Difficulty-Adaptive Slow Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought (CoT) based on problem difficulty. We first propose a Token Length Budget (TLB) metric to quantify difficulty, then leverage budget-aware reward shaping and budget preference optimization to implement DAST. DAST penalizes overlong responses for simple tasks while incentivizing sufficient reasoning for complex problems. Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking (reducing token usage by over 30\% on average) while preserving reasoning accuracy on complex problems. Our codes and models are available at https://github.com/AnonymousUser0520/AnonymousRepo01.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.04472
- https://arxiv.org/pdf/2503.04472
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416113410
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416113410Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.04472Digital Object Identifier
- Title
-
DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-06Full publication date if available
- Authors
-
Shuming Shi, Wenjing Zhang, Jun Yan, Kai Wang, Zhaoxiang Liu, Shiguo LianList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.04472Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.04472Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.04472Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416113410 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.04472 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.04472 |
| ids.openalex | https://openalex.org/W4416113410 |
| fwci | |
| type | preprint |
| title | DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.04472 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.04472 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.04472 |
| locations[1].id | doi:10.48550/arxiv.2503.04472 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.04472 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5087920747 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7018-0682 |
| authorships[0].author.display_name | Shuming Shi |
| authorships[0].author_position | middle |
| authorships[0].raw_author_name | Shi, Shuming |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100407210 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6694-6072 |
| authorships[1].author.display_name | Wenjing Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Wenjing |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5108057313 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1303-1952 |
| authorships[2].author.display_name | Jun Yan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yan, Jiangze |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5041062995 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8813-1448 |
| authorships[3].author.display_name | Kai Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Kai |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101742160 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3404-6229 |
| authorships[4].author.display_name | Zhaoxiang Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Zhaoxiang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5066958531 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4308-7049 |
| authorships[5].author.display_name | Shiguo Lian |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lian, Shiguo |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.04472 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T05:25:44.843702 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.04472 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.04472 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.04472 |
| primary_location.id | pmh:oai:arXiv.org:2503.04472 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.04472 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.04472 |
| publication_date | 2025-03-06 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 60, 81 |
| abstract_inverted_index.We | 78 |
| abstract_inverted_index.at | 150 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.in | 2, 11 |
| abstract_inverted_index.of | 71 |
| abstract_inverted_index.on | 46, 75, 117, 135, 141 |
| abstract_inverted_index.to | 29, 66, 87, 99 |
| abstract_inverted_index.Our | 144 |
| abstract_inverted_index.and | 95, 120, 146 |
| abstract_inverted_index.are | 148 |
| abstract_inverted_index.for | 25, 106, 113 |
| abstract_inverted_index.the | 69 |
| abstract_inverted_index.30\% | 134 |
| abstract_inverted_index.DAST | 102, 125 |
| abstract_inverted_index.Slow | 57 |
| abstract_inverted_index.This | 53 |
| abstract_inverted_index.have | 7 |
| abstract_inverted_index.over | 133 |
| abstract_inverted_index.risk | 43 |
| abstract_inverted_index.slow | 3 |
| abstract_inverted_index.that | 49, 63, 124 |
| abstract_inverted_index.then | 90 |
| abstract_inverted_index.they | 42 |
| abstract_inverted_index.(CoT) | 73 |
| abstract_inverted_index.(TLB) | 85 |
| abstract_inverted_index.DAST. | 101 |
| abstract_inverted_index.Token | 82 |
| abstract_inverted_index.While | 34 |
| abstract_inverted_index.based | 74 |
| abstract_inverted_index.codes | 145 |
| abstract_inverted_index.first | 79 |
| abstract_inverted_index.model | 121 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.often | 18 |
| abstract_inverted_index.paper | 54 |
| abstract_inverted_index.shown | 8 |
| abstract_inverted_index.steps | 24 |
| abstract_inverted_index.tasks | 48, 108 |
| abstract_inverted_index.these | 16 |
| abstract_inverted_index.token | 130 |
| abstract_inverted_index.usage | 131 |
| abstract_inverted_index.while | 109, 137 |
| abstract_inverted_index.Budget | 84 |
| abstract_inverted_index.Length | 83 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.adjust | 68 |
| abstract_inverted_index.budget | 96 |
| abstract_inverted_index.length | 70 |
| abstract_inverted_index.metric | 86 |
| abstract_inverted_index.models | 6, 17, 65, 147 |
| abstract_inverted_index.reduce | 39 |
| abstract_inverted_index.reward | 93 |
| abstract_inverted_index.scales | 122 |
| abstract_inverted_index.simple | 26, 107 |
| abstract_inverted_index.tasks. | 14 |
| abstract_inverted_index.usage. | 33 |
| abstract_inverted_index.(DAST), | 59 |
| abstract_inverted_index.complex | 12, 114, 142 |
| abstract_inverted_index.current | 35 |
| abstract_inverted_index.diverse | 118 |
| abstract_inverted_index.enables | 64 |
| abstract_inverted_index.exhibit | 19 |
| abstract_inverted_index.leading | 28 |
| abstract_inverted_index.problem | 76 |
| abstract_inverted_index.propose | 80 |
| abstract_inverted_index.require | 50 |
| abstract_inverted_index.shaping | 94 |
| abstract_inverted_index.tokens, | 41 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.Thinking | 58 |
| abstract_inverted_index.accuracy | 140 |
| abstract_inverted_index.average) | 136 |
| abstract_inverted_index.datasets | 119 |
| abstract_inverted_index.extended | 51 |
| abstract_inverted_index.leverage | 91 |
| abstract_inverted_index.overlong | 104 |
| abstract_inverted_index.quantify | 88 |
| abstract_inverted_index.resource | 32 |
| abstract_inverted_index.thinking | 4 |
| abstract_inverted_index.(reducing | 129 |
| abstract_inverted_index.available | 149 |
| abstract_inverted_index.degrading | 44 |
| abstract_inverted_index.excessive | 30 |
| abstract_inverted_index.framework | 62 |
| abstract_inverted_index.implement | 100 |
| abstract_inverted_index.mitigates | 127 |
| abstract_inverted_index.penalizes | 103 |
| abstract_inverted_index.problems. | 115, 143 |
| abstract_inverted_index.reasoning | 5, 13, 23, 40, 112, 139 |
| abstract_inverted_index.redundant | 22 |
| abstract_inverted_index.responses | 105 |
| abstract_inverted_index.uniformly | 38 |
| abstract_inverted_index.introduces | 55 |
| abstract_inverted_index.mitigation | 36 |
| abstract_inverted_index.preference | 97 |
| abstract_inverted_index.preserving | 138 |
| abstract_inverted_index.problems), | 27 |
| abstract_inverted_index.reasoning. | 52 |
| abstract_inverted_index.strategies | 37 |
| abstract_inverted_index.sufficient | 111 |
| abstract_inverted_index.(generating | 21 |
| abstract_inverted_index.Experiments | 116 |
| abstract_inverted_index.challenging | 47 |
| abstract_inverted_index.demonstrate | 123 |
| abstract_inverted_index.difficulty, | 89 |
| abstract_inverted_index.difficulty. | 77 |
| abstract_inverted_index.effectively | 126 |
| abstract_inverted_index.exceptional | 9 |
| abstract_inverted_index.performance | 10, 45 |
| abstract_inverted_index.advancements | 1 |
| abstract_inverted_index.autonomously | 67 |
| abstract_inverted_index.budget-aware | 92 |
| abstract_inverted_index.optimization | 98 |
| abstract_inverted_index.overthinking | 20, 128 |
| abstract_inverted_index.computational | 31 |
| abstract_inverted_index.incentivizing | 110 |
| abstract_inverted_index.Chain-of-Thought | 72 |
| abstract_inverted_index.Difficulty-Adaptive | 56 |
| abstract_inverted_index.https://github.com/AnonymousUser0520/AnonymousRepo01. | 151 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |