Data adaptive RKHS Tikhonov regularization for learning kernels in operators Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.03791
We present DARTR: a Data Adaptive RKHS Tikhonov Regularization method for the linear inverse problem of nonparametric learning of function parameters in operators. A key ingredient is a system intrinsic data-adaptive (SIDA) RKHS, whose norm restricts the learning to take place in the function space of identifiability. DARTR utilizes this norm and selects the regularization parameter by the L-curve method. We illustrate its performance in examples including integral operators, nonlinear operators and nonlocal operators with discrete synthetic data. Numerical results show that DARTR leads to an accurate estimator robust to both numerical error due to discrete data and noise in data, and the estimator converges at a consistent rate as the data mesh refines under different levels of noises, outperforming two baseline regularizers using $l^2$ and $L^2$ norms.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.03791
- https://arxiv.org/pdf/2203.03791
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221145110
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221145110Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.03791Digital Object Identifier
- Title
-
Data adaptive RKHS Tikhonov regularization for learning kernels in operatorsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-08Full publication date if available
- Authors
-
Fei Lu, Quanjun Lang, Qingci AnList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.03791Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.03791Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.03791Direct OA link when available
- Concepts
-
Tikhonov regularization, Regularization perspectives on support vector machines, Regularization (linguistics), Reproducing kernel Hilbert space, Mathematics, Estimator, Applied mathematics, Nonparametric statistics, Inverse problem, Hilbert space, Norm (philosophy), Mathematical optimization, Computer science, Algorithm, Artificial intelligence, Mathematical analysis, Statistics, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221145110 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.03791 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.03791 |
| ids.openalex | https://openalex.org/W4221145110 |
| fwci | |
| type | preprint |
| title | Data adaptive RKHS Tikhonov regularization for learning kernels in operators |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11205 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Numerical methods in inverse problems |
| topics[1].id | https://openalex.org/T12015 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9708999991416931 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Photoacoustic and Ultrasonic Imaging |
| topics[2].id | https://openalex.org/T11778 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9136000275611877 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electrical and Bioimpedance Tomography |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C152442038 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8925729990005493 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2778212 |
| concepts[0].display_name | Tikhonov regularization |
| concepts[1].id | https://openalex.org/C141718189 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6780309677124023 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7309628 |
| concepts[1].display_name | Regularization perspectives on support vector machines |
| concepts[2].id | https://openalex.org/C2776135515 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6182869672775269 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[2].display_name | Regularization (linguistics) |
| concepts[3].id | https://openalex.org/C80884492 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6034015417098999 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3345678 |
| concepts[3].display_name | Reproducing kernel Hilbert space |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.560304582118988 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C185429906 |
| concepts[5].level | 2 |
| concepts[5].score | 0.551100492477417 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[5].display_name | Estimator |
| concepts[6].id | https://openalex.org/C28826006 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5128477215766907 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[6].display_name | Applied mathematics |
| concepts[7].id | https://openalex.org/C102366305 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45092177391052246 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[7].display_name | Nonparametric statistics |
| concepts[8].id | https://openalex.org/C135252773 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4488990306854248 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[8].display_name | Inverse problem |
| concepts[9].id | https://openalex.org/C62799726 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4255744516849518 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q190056 |
| concepts[9].display_name | Hilbert space |
| concepts[10].id | https://openalex.org/C191795146 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41160088777542114 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3878446 |
| concepts[10].display_name | Norm (philosophy) |
| concepts[11].id | https://openalex.org/C126255220 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3924132287502289 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[11].display_name | Mathematical optimization |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3825885057449341 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.32009798288345337 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.28040796518325806 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.18170621991157532 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.11350151896476746 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/tikhonov-regularization |
| keywords[0].score | 0.8925729990005493 |
| keywords[0].display_name | Tikhonov regularization |
| keywords[1].id | https://openalex.org/keywords/regularization-perspectives-on-support-vector-machines |
| keywords[1].score | 0.6780309677124023 |
| keywords[1].display_name | Regularization perspectives on support vector machines |
| keywords[2].id | https://openalex.org/keywords/regularization |
| keywords[2].score | 0.6182869672775269 |
| keywords[2].display_name | Regularization (linguistics) |
| keywords[3].id | https://openalex.org/keywords/reproducing-kernel-hilbert-space |
| keywords[3].score | 0.6034015417098999 |
| keywords[3].display_name | Reproducing kernel Hilbert space |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.560304582118988 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/estimator |
| keywords[5].score | 0.551100492477417 |
| keywords[5].display_name | Estimator |
| keywords[6].id | https://openalex.org/keywords/applied-mathematics |
| keywords[6].score | 0.5128477215766907 |
| keywords[6].display_name | Applied mathematics |
| keywords[7].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[7].score | 0.45092177391052246 |
| keywords[7].display_name | Nonparametric statistics |
| keywords[8].id | https://openalex.org/keywords/inverse-problem |
| keywords[8].score | 0.4488990306854248 |
| keywords[8].display_name | Inverse problem |
| keywords[9].id | https://openalex.org/keywords/hilbert-space |
| keywords[9].score | 0.4255744516849518 |
| keywords[9].display_name | Hilbert space |
| keywords[10].id | https://openalex.org/keywords/norm |
| keywords[10].score | 0.41160088777542114 |
| keywords[10].display_name | Norm (philosophy) |
| keywords[11].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[11].score | 0.3924132287502289 |
| keywords[11].display_name | Mathematical optimization |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.3825885057449341 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.32009798288345337 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.28040796518325806 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[15].score | 0.18170621991157532 |
| keywords[15].display_name | Mathematical analysis |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.11350151896476746 |
| keywords[16].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.03791 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.03791 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.03791 |
| locations[1].id | doi:10.48550/arxiv.2203.03791 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.03791 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5070405591 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6842-7922 |
| authorships[0].author.display_name | Fei Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lu, Fei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031867616 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Quanjun Lang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lang, Quanjun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5018886841 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Qingci An |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | An, Qingci |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.03791 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-03T00:00:00 |
| display_name | Data adaptive RKHS Tikhonov regularization for learning kernels in operators |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11205 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Numerical methods in inverse problems |
| related_works | https://openalex.org/W2366023887, https://openalex.org/W2059130945, https://openalex.org/W2394283419, https://openalex.org/W2805921369, https://openalex.org/W2189115788, https://openalex.org/W2118199608, https://openalex.org/W2807240017, https://openalex.org/W2375028209, https://openalex.org/W4247967441, https://openalex.org/W4244092552 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.03791 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.03791 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.03791 |
| primary_location.id | pmh:oai:arXiv.org:2203.03791 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.03791 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.03791 |
| publication_date | 2022-03-08 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 23 |
| abstract_inverted_index.a | 3, 27, 106 |
| abstract_inverted_index.We | 0, 60 |
| abstract_inverted_index.an | 85 |
| abstract_inverted_index.as | 109 |
| abstract_inverted_index.at | 105 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.in | 21, 41, 64, 99 |
| abstract_inverted_index.is | 26 |
| abstract_inverted_index.of | 15, 18, 45, 117 |
| abstract_inverted_index.to | 38, 84, 89, 94 |
| abstract_inverted_index.and | 51, 71, 97, 101, 125 |
| abstract_inverted_index.due | 93 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.its | 62 |
| abstract_inverted_index.key | 24 |
| abstract_inverted_index.the | 11, 36, 42, 53, 57, 102, 110 |
| abstract_inverted_index.two | 120 |
| abstract_inverted_index.Data | 4 |
| abstract_inverted_index.RKHS | 6 |
| abstract_inverted_index.both | 90 |
| abstract_inverted_index.data | 96, 111 |
| abstract_inverted_index.mesh | 112 |
| abstract_inverted_index.norm | 34, 50 |
| abstract_inverted_index.rate | 108 |
| abstract_inverted_index.show | 80 |
| abstract_inverted_index.take | 39 |
| abstract_inverted_index.that | 81 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.with | 74 |
| abstract_inverted_index.$L^2$ | 126 |
| abstract_inverted_index.$l^2$ | 124 |
| abstract_inverted_index.DARTR | 47, 82 |
| abstract_inverted_index.RKHS, | 32 |
| abstract_inverted_index.data, | 100 |
| abstract_inverted_index.data. | 77 |
| abstract_inverted_index.error | 92 |
| abstract_inverted_index.leads | 83 |
| abstract_inverted_index.noise | 98 |
| abstract_inverted_index.place | 40 |
| abstract_inverted_index.space | 44 |
| abstract_inverted_index.under | 114 |
| abstract_inverted_index.using | 123 |
| abstract_inverted_index.whose | 33 |
| abstract_inverted_index.(SIDA) | 31 |
| abstract_inverted_index.DARTR: | 2 |
| abstract_inverted_index.levels | 116 |
| abstract_inverted_index.linear | 12 |
| abstract_inverted_index.method | 9 |
| abstract_inverted_index.norms. | 127 |
| abstract_inverted_index.robust | 88 |
| abstract_inverted_index.system | 28 |
| abstract_inverted_index.L-curve | 58 |
| abstract_inverted_index.inverse | 13 |
| abstract_inverted_index.method. | 59 |
| abstract_inverted_index.noises, | 118 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.problem | 14 |
| abstract_inverted_index.refines | 113 |
| abstract_inverted_index.results | 79 |
| abstract_inverted_index.selects | 52 |
| abstract_inverted_index.Adaptive | 5 |
| abstract_inverted_index.Tikhonov | 7 |
| abstract_inverted_index.accurate | 86 |
| abstract_inverted_index.baseline | 121 |
| abstract_inverted_index.discrete | 75, 95 |
| abstract_inverted_index.examples | 65 |
| abstract_inverted_index.function | 19, 43 |
| abstract_inverted_index.integral | 67 |
| abstract_inverted_index.learning | 17, 37 |
| abstract_inverted_index.nonlocal | 72 |
| abstract_inverted_index.utilizes | 48 |
| abstract_inverted_index.Numerical | 78 |
| abstract_inverted_index.converges | 104 |
| abstract_inverted_index.different | 115 |
| abstract_inverted_index.estimator | 87, 103 |
| abstract_inverted_index.including | 66 |
| abstract_inverted_index.intrinsic | 29 |
| abstract_inverted_index.nonlinear | 69 |
| abstract_inverted_index.numerical | 91 |
| abstract_inverted_index.operators | 70, 73 |
| abstract_inverted_index.parameter | 55 |
| abstract_inverted_index.restricts | 35 |
| abstract_inverted_index.synthetic | 76 |
| abstract_inverted_index.consistent | 107 |
| abstract_inverted_index.illustrate | 61 |
| abstract_inverted_index.ingredient | 25 |
| abstract_inverted_index.operators, | 68 |
| abstract_inverted_index.operators. | 22 |
| abstract_inverted_index.parameters | 20 |
| abstract_inverted_index.performance | 63 |
| abstract_inverted_index.regularizers | 122 |
| abstract_inverted_index.data-adaptive | 30 |
| abstract_inverted_index.nonparametric | 16 |
| abstract_inverted_index.outperforming | 119 |
| abstract_inverted_index.Regularization | 8 |
| abstract_inverted_index.regularization | 54 |
| abstract_inverted_index.identifiability. | 46 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |