Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v38i5.28249
Vision-language foundation models have been incredibly successful in a wide range of downstream computer vision tasks using adaptation methods. However, due to the high cost of obtaining pre-training datasets, pairs with weak image-text correlation in the data exist in large numbers. We call them weak-paired samples. Due to the limitations of these weak-paired samples, the pre-training model are unable to mine all the knowledge from pre-training data. The existing adaptation methods do not consider the missing knowledge, which may lead to crucial task-related knowledge for the downstream tasks being ignored. To address this issue, we propose a new adaptation framework called Data Adaptive Traceback (DAT). Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data to enable the downstream tasks. Furthermore, we adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning. We conduct extensive experiments that show our proposed DAT approach meaningfully improves various benchmark datasets’ performance over traditional adaptation methods by simply.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v38i5.28249
- https://ojs.aaai.org/index.php/AAAI/article/download/28249/28493
- OA Status
- diamond
- Cited By
- 1
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393153727
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393153727Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v38i5.28249Digital Object Identifier
- Title
-
Data Adaptive Traceback for Vision-Language Foundation Models in Image ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-24Full publication date if available
- Authors
-
Wenshuo Peng, Kaipeng Zhang, Yang Yue, Hao Zhang, Yu QiaoList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v38i5.28249Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/28249/28493Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/28249/28493Direct OA link when available
- Concepts
-
Computer science, Adaptation (eye), Task (project management), Artificial intelligence, Machine learning, Benchmark (surveying), Downstream (manufacturing), Labeled data, Natural language processing, Optics, Operations management, Management, Economics, Geography, Geodesy, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393153727 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v38i5.28249 |
| ids.doi | https://doi.org/10.1609/aaai.v38i5.28249 |
| ids.openalex | https://openalex.org/W4393153727 |
| fwci | 0.24251649 |
| type | article |
| title | Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification |
| biblio.issue | 5 |
| biblio.volume | 38 |
| biblio.last_page | 4514 |
| biblio.first_page | 4506 |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8109692931175232 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C139807058 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6896114945411682 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[1].display_name | Adaptation (eye) |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6538718938827515 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6006740927696228 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5642649531364441 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5172003507614136 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C2776207758 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5095865726470947 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5303302 |
| concepts[6].display_name | Downstream (manufacturing) |
| concepts[7].id | https://openalex.org/C2776145971 |
| concepts[7].level | 2 |
| concepts[7].score | 0.457133412361145 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[7].display_name | Labeled data |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32771241664886475 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C120665830 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[9].display_name | Optics |
| concepts[10].id | https://openalex.org/C21547014 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[10].display_name | Operations management |
| concepts[11].id | https://openalex.org/C187736073 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[11].display_name | Management |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C205649164 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[13].display_name | Geography |
| concepts[14].id | https://openalex.org/C13280743 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[14].display_name | Geodesy |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8109692931175232 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/adaptation |
| keywords[1].score | 0.6896114945411682 |
| keywords[1].display_name | Adaptation (eye) |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.6538718938827515 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6006740927696228 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5642649531364441 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.5172003507614136 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/downstream |
| keywords[6].score | 0.5095865726470947 |
| keywords[6].display_name | Downstream (manufacturing) |
| keywords[7].id | https://openalex.org/keywords/labeled-data |
| keywords[7].score | 0.457133412361145 |
| keywords[7].display_name | Labeled data |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.32771241664886475 |
| keywords[8].display_name | Natural language processing |
| language | en |
| locations[0].id | doi:10.1609/aaai.v38i5.28249 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28249/28493 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v38i5.28249 |
| locations[1].id | pmh:oai:arXiv.org:2407.08787 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2407.08787 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2407.08787 |
| locations[2].id | doi:10.48550/arxiv.2407.08787 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.2407.08787 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5036259025 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wenshuo Peng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210122302, https://openalex.org/I4391012619 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai AI Laboratory |
| authorships[0].institutions[0].id | https://openalex.org/I4391012619 |
| authorships[0].institutions[0].ror | https://ror.org/03wkvpx79 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4391012619 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Shanghai Artificial Intelligence Laboratory |
| authorships[0].institutions[1].id | https://openalex.org/I4210122302 |
| authorships[0].institutions[1].ror | https://ror.org/02rgbry52 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210122302 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | ShangHai JiAi Genetics & IVF Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenshuo Peng |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Shanghai AI Laboratory |
| authorships[1].author.id | https://openalex.org/A5036606244 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6105-6532 |
| authorships[1].author.display_name | Kaipeng Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210122302, https://openalex.org/I4391012619 |
| authorships[1].affiliations[0].raw_affiliation_string | Shanghai AI Laboratory |
| authorships[1].institutions[0].id | https://openalex.org/I4391012619 |
| authorships[1].institutions[0].ror | https://ror.org/03wkvpx79 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I4391012619 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Shanghai Artificial Intelligence Laboratory |
| authorships[1].institutions[1].id | https://openalex.org/I4210122302 |
| authorships[1].institutions[1].ror | https://ror.org/02rgbry52 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210122302 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | ShangHai JiAi Genetics & IVF Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kaipeng Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shanghai AI Laboratory |
| authorships[2].author.id | https://openalex.org/A5100624671 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-2926-3596 |
| authorships[2].author.display_name | Yang Yue |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183067930 |
| authorships[2].affiliations[0].raw_affiliation_string | Shanghai AI Laboratory Shanghai Jiao Tong University |
| authorships[2].institutions[0].id | https://openalex.org/I183067930 |
| authorships[2].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yue Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shanghai AI Laboratory Shanghai Jiao Tong University |
| authorships[3].author.id | https://openalex.org/A5100396897 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3572-7053 |
| authorships[3].author.display_name | Hao Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I87445476 |
| authorships[3].affiliations[0].raw_affiliation_string | Shanghai AI Laboratory Xi'an Jiaotong University |
| authorships[3].institutions[0].id | https://openalex.org/I87445476 |
| authorships[3].institutions[0].ror | https://ror.org/017zhmm22 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I87445476 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xi'an Jiaotong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hao Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Shanghai AI Laboratory Xi'an Jiaotong University |
| authorships[4].author.id | https://openalex.org/A5100748135 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1889-2567 |
| authorships[4].author.display_name | Yu Qiao |
| authorships[4].affiliations[0].raw_affiliation_string | Shanghai AI Laboraotry |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yu Qiao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Shanghai AI Laboraotry |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/28249/28493 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-03-26T00:00:00 |
| display_name | Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W2378211422, https://openalex.org/W1583765404, https://openalex.org/W2745001401, https://openalex.org/W4321353415, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W972276598, https://openalex.org/W2087343574, https://openalex.org/W4381247876 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1609/aaai.v38i5.28249 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28249/28493 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v38i5.28249 |
| primary_location.id | doi:10.1609/aaai.v38i5.28249 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/28249/28493 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v38i5.28249 |
| publication_date | 2024-03-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W12634471, https://openalex.org/W3130033937, https://openalex.org/W3005680577, https://openalex.org/W6662259680, https://openalex.org/W2987283559, https://openalex.org/W6687483927, https://openalex.org/W6759579507, https://openalex.org/W3126337491, https://openalex.org/W2138011018, https://openalex.org/W6644585003, https://openalex.org/W3215495159, https://openalex.org/W3001197829, https://openalex.org/W6928992657, https://openalex.org/W2798991696, https://openalex.org/W2017814585, https://openalex.org/W6810158289, https://openalex.org/W4223492139, https://openalex.org/W3176641147, https://openalex.org/W3175604467, https://openalex.org/W4362679702, https://openalex.org/W4313136445, https://openalex.org/W4313679638, https://openalex.org/W4226058394, https://openalex.org/W4312421335, https://openalex.org/W3118608800, https://openalex.org/W3035524453, https://openalex.org/W2194775991, https://openalex.org/W4292779060, https://openalex.org/W2896457183, https://openalex.org/W3176828726, https://openalex.org/W3215626407, https://openalex.org/W4224308101, https://openalex.org/W3209532394, https://openalex.org/W3213647938, https://openalex.org/W3166396011, https://openalex.org/W3103455452, https://openalex.org/W4297808394, https://openalex.org/W4286527741, https://openalex.org/W4385245566, https://openalex.org/W4312349930, https://openalex.org/W4386065512, https://openalex.org/W2047643928, https://openalex.org/W4384918448, https://openalex.org/W2964303773, https://openalex.org/W1846799578 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 8, 96, 108, 130, 140 |
| abstract_inverted_index.To | 90 |
| abstract_inverted_index.We | 41, 154 |
| abstract_inverted_index.by | 174 |
| abstract_inverted_index.do | 71 |
| abstract_inverted_index.in | 7, 34, 38, 151 |
| abstract_inverted_index.of | 11, 25, 50, 118 |
| abstract_inverted_index.to | 21, 47, 59, 80, 111, 122, 134, 145 |
| abstract_inverted_index.we | 94, 106, 128 |
| abstract_inverted_index.DAT | 162 |
| abstract_inverted_index.Due | 46 |
| abstract_inverted_index.The | 67 |
| abstract_inverted_index.all | 61 |
| abstract_inverted_index.and | 139 |
| abstract_inverted_index.are | 57 |
| abstract_inverted_index.due | 20 |
| abstract_inverted_index.for | 84 |
| abstract_inverted_index.may | 78 |
| abstract_inverted_index.new | 97 |
| abstract_inverted_index.not | 72 |
| abstract_inverted_index.our | 160 |
| abstract_inverted_index.the | 22, 35, 48, 54, 62, 74, 85, 113, 119, 124, 136, 147 |
| abstract_inverted_index.Data | 101 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.bias | 149 |
| abstract_inverted_index.call | 42 |
| abstract_inverted_index.cost | 24 |
| abstract_inverted_index.data | 36, 121 |
| abstract_inverted_index.from | 64 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.high | 23 |
| abstract_inverted_index.lead | 79 |
| abstract_inverted_index.mine | 60 |
| abstract_inverted_index.most | 114 |
| abstract_inverted_index.over | 170 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.that | 158 |
| abstract_inverted_index.them | 43 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.weak | 31 |
| abstract_inverted_index.wide | 9 |
| abstract_inverted_index.with | 30 |
| abstract_inverted_index.adopt | 129 |
| abstract_inverted_index.being | 88 |
| abstract_inverted_index.data. | 66 |
| abstract_inverted_index.exist | 37 |
| abstract_inverted_index.issue | 150 |
| abstract_inverted_index.large | 39 |
| abstract_inverted_index.model | 56 |
| abstract_inverted_index.pairs | 29 |
| abstract_inverted_index.range | 10 |
| abstract_inverted_index.reuse | 135 |
| abstract_inverted_index.tasks | 15, 87 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.using | 16 |
| abstract_inverted_index.which | 77 |
| abstract_inverted_index.(DAT). | 104 |
| abstract_inverted_index.called | 100 |
| abstract_inverted_index.enable | 123 |
| abstract_inverted_index.images | 138 |
| abstract_inverted_index.issue, | 93 |
| abstract_inverted_index.method | 110, 144 |
| abstract_inverted_index.models | 2 |
| abstract_inverted_index.subset | 117 |
| abstract_inverted_index.tasks. | 126 |
| abstract_inverted_index.unable | 58 |
| abstract_inverted_index.vision | 14 |
| abstract_inverted_index.address | 91, 146 |
| abstract_inverted_index.conduct | 155 |
| abstract_inverted_index.crucial | 81 |
| abstract_inverted_index.extract | 112 |
| abstract_inverted_index.methods | 70, 173 |
| abstract_inverted_index.missing | 75 |
| abstract_inverted_index.propose | 95 |
| abstract_inverted_index.simply. | 175 |
| abstract_inverted_index.utilize | 107 |
| abstract_inverted_index.various | 166 |
| abstract_inverted_index.Adaptive | 102 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.approach | 163 |
| abstract_inverted_index.computer | 13 |
| abstract_inverted_index.consider | 73 |
| abstract_inverted_index.existing | 68 |
| abstract_inverted_index.ignored. | 89 |
| abstract_inverted_index.improves | 165 |
| abstract_inverted_index.learning | 143 |
| abstract_inverted_index.methods. | 18 |
| abstract_inverted_index.numbers. | 40 |
| abstract_inverted_index.proposed | 161 |
| abstract_inverted_index.samples, | 53 |
| abstract_inverted_index.samples. | 45 |
| abstract_inverted_index.Traceback | 103 |
| abstract_inverted_index.benchmark | 167 |
| abstract_inverted_index.datasets, | 28 |
| abstract_inverted_index.extensive | 156 |
| abstract_inverted_index.framework | 99 |
| abstract_inverted_index.knowledge | 63, 83 |
| abstract_inverted_index.learning. | 153 |
| abstract_inverted_index.obtaining | 26 |
| abstract_inverted_index.technique | 133 |
| abstract_inverted_index.adaptation | 17, 69, 98, 172 |
| abstract_inverted_index.downstream | 12, 86, 115, 125 |
| abstract_inverted_index.foundation | 1 |
| abstract_inverted_index.image-text | 32 |
| abstract_inverted_index.incredibly | 5 |
| abstract_inverted_index.knowledge, | 76 |
| abstract_inverted_index.successful | 6 |
| abstract_inverted_index.contrastive | 142 |
| abstract_inverted_index.correlation | 33 |
| abstract_inverted_index.datasets’ | 168 |
| abstract_inverted_index.experiments | 157 |
| abstract_inverted_index.limitations | 49 |
| abstract_inverted_index.performance | 169 |
| abstract_inverted_index.traditional | 171 |
| abstract_inverted_index.weak-paired | 44, 52 |
| abstract_inverted_index.Furthermore, | 127 |
| abstract_inverted_index.confirmation | 148 |
| abstract_inverted_index.meaningfully | 164 |
| abstract_inverted_index.pre-training | 27, 55, 65, 120, 137 |
| abstract_inverted_index.task-related | 82, 116 |
| abstract_inverted_index.Specifically, | 105 |
| abstract_inverted_index.Vision-language | 0 |
| abstract_inverted_index.semi-supervised | 132, 152 |
| abstract_inverted_index.vision-language | 141 |
| abstract_inverted_index.zero-shot-based | 109 |
| abstract_inverted_index.pseudo-label-based | 131 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6899999976158142 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.32050606 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |