Data archive for paper "Copula-based synthetic data augmentation for machine-learning emulators" Article Swipe
Overview This is the data archive for paper “Copula-based synthetic data augmentation for machine-learning emulators”. It contains the paper’s data archive with all model outputs as well as the Singularity image. For the Python tool used to generate the synthetic data, please refer to the Synthia repository. Requirements Singularity >= 3 Portable Batch System (PBS) job scheduler* Today’s high-performance computer (e.g. ~ 32 CPUs @ 2 500 MHz with 64 GB of RAM ) *Although PBS in not a strict requirement, it is required to run all helper scripts as included in this repository. Please note that depending on your specific system settings and resource availability, you may need to modify PBS parameters at the top of submit scripts stored in the hpc directory (e.g. #PBS -lwalltime=72:00:00). Usage To reproduce the results from the experiments described in the paper, first fit all copula models to the reduced NWP-SAF dataset with: qsub hpc/fit.sh then, to generate synthetic data, run all machine learning model configurations, and compute the relevant statistics use: qsub hpc/stats.sh qsub hpc/ml_control.sh qsub hpc/ml_synth.sh Finally, to plot all artifacts included in the paper use: qsub hpc/plot.sh Licence Code released under MIT license. Data released under CC BY 4.0.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://zenodo.org/record/5081927
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393568214
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393568214Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.5081927Digital Object Identifier
- Title
-
Data archive for paper "Copula-based synthetic data augmentation for machine-learning emulators"Work title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-08Full publication date if available
- Authors
-
David E. MeyerList of authors in order
- Landing page
-
https://zenodo.org/record/5081927Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/5081927Direct OA link when available
- Concepts
-
Copula (linguistics), Computer science, Machine learning, Artificial intelligence, Data mining, Data science, Econometrics, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393568214 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.5081927 |
| ids.doi | https://doi.org/10.5281/zenodo.5081927 |
| ids.openalex | https://openalex.org/W4393568214 |
| fwci | |
| type | dataset |
| title | Data archive for paper "Copula-based synthetic data augmentation for machine-learning emulators" |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10715 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.909500002861023 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Distributed and Parallel Computing Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C17618745 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7723928689956665 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q207509 |
| concepts[0].display_name | Copula (linguistics) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5791919231414795 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.48680540919303894 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4481911063194275 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.37229233980178833 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3534351885318756 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2287808656692505 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.11833226680755615 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/copula |
| keywords[0].score | 0.7723928689956665 |
| keywords[0].display_name | Copula (linguistics) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5791919231414795 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.48680540919303894 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.4481911063194275 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.37229233980178833 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.3534351885318756 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.2287808656692505 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.11833226680755615 |
| keywords[7].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:zenodo.org:5081927 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | other-oa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/other |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://zenodo.org/record/5081927 |
| locations[1].id | doi:10.5281/zenodo.5081927 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400562 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | dataset |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.5281/zenodo.5081927 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5016130499 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7071-7547 |
| authorships[0].author.display_name | David E. Meyer |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David Meyer |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/5081927 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data archive for paper "Copula-based synthetic data augmentation for machine-learning emulators" |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10715 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.909500002861023 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Distributed and Parallel Computing Systems |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347, https://openalex.org/W4210805261 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:zenodo.org:5081927 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/other |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://zenodo.org/record/5081927 |
| primary_location.id | pmh:oai:zenodo.org:5081927 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | other-oa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/other |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://zenodo.org/record/5081927 |
| publication_date | 2021-07-08 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.) | 73 |
| abstract_inverted_index.2 | 65 |
| abstract_inverted_index.3 | 50 |
| abstract_inverted_index.@ | 64 |
| abstract_inverted_index.a | 78 |
| abstract_inverted_index.~ | 61 |
| abstract_inverted_index.32 | 62 |
| abstract_inverted_index.64 | 69 |
| abstract_inverted_index.BY | 197 |
| abstract_inverted_index.CC | 196 |
| abstract_inverted_index.GB | 70 |
| abstract_inverted_index.It | 15 |
| abstract_inverted_index.To | 128 |
| abstract_inverted_index.as | 25, 27, 89 |
| abstract_inverted_index.at | 113 |
| abstract_inverted_index.in | 76, 91, 120, 136, 181 |
| abstract_inverted_index.is | 2, 82 |
| abstract_inverted_index.it | 81 |
| abstract_inverted_index.of | 71, 116 |
| abstract_inverted_index.on | 98 |
| abstract_inverted_index.to | 36, 43, 84, 109, 144, 153, 176 |
| abstract_inverted_index.500 | 66 |
| abstract_inverted_index.For | 31 |
| abstract_inverted_index.MHz | 67 |
| abstract_inverted_index.MIT | 191 |
| abstract_inverted_index.PBS | 75, 111 |
| abstract_inverted_index.RAM | 72 |
| abstract_inverted_index.all | 22, 86, 141, 158, 178 |
| abstract_inverted_index.and | 103, 163 |
| abstract_inverted_index.fit | 140 |
| abstract_inverted_index.for | 6, 12 |
| abstract_inverted_index.job | 55 |
| abstract_inverted_index.may | 107 |
| abstract_inverted_index.not | 77 |
| abstract_inverted_index.run | 85, 157 |
| abstract_inverted_index.the | 3, 17, 28, 32, 38, 44, 114, 121, 130, 133, 137, 145, 165, 182 |
| abstract_inverted_index.top | 115 |
| abstract_inverted_index.you | 106 |
| abstract_inverted_index.4.0. | 198 |
| abstract_inverted_index.CPUs | 63 |
| abstract_inverted_index.Code | 188 |
| abstract_inverted_index.Data | 193 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.data | 4, 10, 19 |
| abstract_inverted_index.from | 132 |
| abstract_inverted_index.need | 108 |
| abstract_inverted_index.note | 95 |
| abstract_inverted_index.plot | 177 |
| abstract_inverted_index.qsub | 171, 173 |
| abstract_inverted_index.that | 96 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.tool | 34 |
| abstract_inverted_index.use: | 168, 184 |
| abstract_inverted_index.used | 35 |
| abstract_inverted_index.well | 26 |
| abstract_inverted_index.with | 21, 68 |
| abstract_inverted_index.your | 99 |
| abstract_inverted_index.>= | 49 |
| abstract_inverted_index.(PBS) | 54 |
| abstract_inverted_index.(e.g. | 60, 124 |
| abstract_inverted_index.Batch | 52 |
| abstract_inverted_index.data, | 40, 156 |
| abstract_inverted_index.first | 139 |
| abstract_inverted_index.model | 23, 161 |
| abstract_inverted_index.paper | 7, 183 |
| abstract_inverted_index.refer | 42 |
| abstract_inverted_index.then, | 152 |
| abstract_inverted_index.under | 190, 195 |
| abstract_inverted_index.with: | 149 |
| abstract_inverted_index.Please | 94 |
| abstract_inverted_index.Python | 33 |
| abstract_inverted_index.System | 53 |
| abstract_inverted_index.copula | 142 |
| abstract_inverted_index.helper | 87 |
| abstract_inverted_index.image. | 30 |
| abstract_inverted_index.models | 143 |
| abstract_inverted_index.modify | 110 |
| abstract_inverted_index.paper, | 138 |
| abstract_inverted_index.please | 41 |
| abstract_inverted_index.stored | 119 |
| abstract_inverted_index.strict | 79 |
| abstract_inverted_index.submit | 117 |
| abstract_inverted_index.system | 101 |
| abstract_inverted_index.NWP-SAF | 147 |
| abstract_inverted_index.Synthia | 45 |
| abstract_inverted_index.archive | 5, 20 |
| abstract_inverted_index.compute | 164 |
| abstract_inverted_index.dataset | 148 |
| abstract_inverted_index.machine | 159 |
| abstract_inverted_index.outputs | 24 |
| abstract_inverted_index.reduced | 146 |
| abstract_inverted_index.results | 131 |
| abstract_inverted_index.scripts | 88, 118 |
| abstract_inverted_index.Finally, | 175 |
| abstract_inverted_index.Portable | 51 |
| abstract_inverted_index.computer | 59 |
| abstract_inverted_index.contains | 16 |
| abstract_inverted_index.generate | 37, 154 |
| abstract_inverted_index.included | 90, 180 |
| abstract_inverted_index.learning | 160 |
| abstract_inverted_index.license. | 192 |
| abstract_inverted_index.released | 189, 194 |
| abstract_inverted_index.relevant | 166 |
| abstract_inverted_index.required | 83 |
| abstract_inverted_index.resource | 104 |
| abstract_inverted_index.settings | 102 |
| abstract_inverted_index.specific | 100 |
| abstract_inverted_index.*Although | 74 |
| abstract_inverted_index.Today’s | 57 |
| abstract_inverted_index.artifacts | 179 |
| abstract_inverted_index.depending | 97 |
| abstract_inverted_index.described | 135 |
| abstract_inverted_index.directory | 123 |
| abstract_inverted_index.paper’s | 18 |
| abstract_inverted_index.reproduce | 129 |
| abstract_inverted_index.synthetic | 9, 39, 155 |
| abstract_inverted_index.<code>#PBS | 125 |
| abstract_inverted_index.parameters | 112 |
| abstract_inverted_index.scheduler* | 56 |
| abstract_inverted_index.statistics | 167 |
| abstract_inverted_index.Singularity | 29, 48 |
| abstract_inverted_index.experiments | 134 |
| abstract_inverted_index.repository. | 46, 93 |
| abstract_inverted_index.augmentation | 11 |
| abstract_inverted_index.hpc/stats.sh | 170 |
| abstract_inverted_index.requirement, | 80 |
| abstract_inverted_index.availability, | 105 |
| abstract_inverted_index.emulators”. | 14 |
| abstract_inverted_index.<pre><code>qsub | 150, 169, 185 |
| abstract_inverted_index.configurations, | 162 |
| abstract_inverted_index.“Copula-based | 8 |
| abstract_inverted_index.<code>hpc</code> | 122 |
| abstract_inverted_index.high-performance | 58 |
| abstract_inverted_index.machine-learning | 13 |
| abstract_inverted_index.hpc/ml_control.sh | 172 |
| abstract_inverted_index.<strong>Usage</strong> | 127 |
| abstract_inverted_index.hpc/fit.sh</code></pre> | 151 |
| abstract_inverted_index.<strong>Licence</strong> | 187 |
| abstract_inverted_index.hpc/plot.sh</code></pre> | 186 |
| abstract_inverted_index.<strong>Overview</strong> | 0 |
| abstract_inverted_index.-lwalltime=72:00:00</code>). | 126 |
| abstract_inverted_index.hpc/ml_synth.sh</code></pre> | 174 |
| abstract_inverted_index.<strong>Requirements</strong> | 47 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5016130499 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |