Data Assimilation Methods for Neuronal State and Parameter Estimation Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1186/s13408-018-0066-8
This tutorial illustrates the use of data assimilation algorithms to estimate unobserved variables and unknown parameters of conductance-based neuronal models. Modern data assimilation (DA) techniques are widely used in climate science and weather prediction, but have only recently begun to be applied in neuroscience. The two main classes of DA techniques are sequential methods and variational methods. We provide computer code implementing basic versions of a method from each class, the Unscented Kalman Filter and 4D-Var, and demonstrate how to use these algorithms to infer several parameters of the Morris-Lecar model from a single voltage trace. Depending on parameters, the Morris-Lecar model exhibits qualitatively different types of neuronal excitability due to changes in the underlying bifurcation structure. We show that when presented with voltage traces from each of the various excitability regimes, the DA methods can identify parameter sets that produce the correct bifurcation structure even with initial parameter guesses that correspond to a different excitability regime. This demonstrates the ability of DA techniques to perform nonlinear state and parameter estimation and introduces the geometric structure of inferred models as a novel qualitative measure of estimation success. We conclude by discussing extensions of these DA algorithms that have appeared in the neuroscience literature.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1186/s13408-018-0066-8
- https://mathematical-neuroscience.springeropen.com/track/pdf/10.1186/s13408-018-0066-8
- OA Status
- hybrid
- Cited By
- 38
- References
- 78
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2886172288
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2886172288Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s13408-018-0066-8Digital Object Identifier
- Title
-
Data Assimilation Methods for Neuronal State and Parameter EstimationWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-08-09Full publication date if available
- Authors
-
Matthew Moye, Casey O. DiekmanList of authors in order
- Landing page
-
https://doi.org/10.1186/s13408-018-0066-8Publisher landing page
- PDF URL
-
https://mathematical-neuroscience.springeropen.com/track/pdf/10.1186/s13408-018-0066-8Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://mathematical-neuroscience.springeropen.com/track/pdf/10.1186/s13408-018-0066-8Direct OA link when available
- Concepts
-
Computer science, Data assimilation, Kalman filter, Nonlinear system, Estimation theory, Bifurcation, Artificial intelligence, Filter (signal processing), State (computer science), Machine learning, Algorithm, Computer vision, Quantum mechanics, Meteorology, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
38Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2, 2023: 5, 2022: 11, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
78Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2886172288 |
|---|---|
| doi | https://doi.org/10.1186/s13408-018-0066-8 |
| ids.doi | https://doi.org/10.1186/s13408-018-0066-8 |
| ids.mag | 2886172288 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/30094571 |
| ids.openalex | https://openalex.org/W2886172288 |
| fwci | 2.17173764 |
| type | review |
| title | Data Assimilation Methods for Neuronal State and Parameter Estimation |
| awards[0].id | https://openalex.org/G2190056451 |
| awards[0].funder_id | https://openalex.org/F4320337380 |
| awards[0].display_name | |
| awards[0].funder_award_id | 1555237 |
| awards[0].funder_display_name | Division of Mathematical Sciences |
| awards[1].id | https://openalex.org/G4932515418 |
| awards[1].funder_id | https://openalex.org/F4320337380 |
| awards[1].display_name | |
| awards[1].funder_award_id | 1412877 |
| awards[1].funder_display_name | Division of Mathematical Sciences |
| awards[2].id | https://openalex.org/G6546925990 |
| awards[2].funder_id | https://openalex.org/F4320338295 |
| awards[2].display_name | |
| awards[2].funder_award_id | W911NF-16-1-0584 |
| awards[2].funder_display_name | Army Research Laboratory |
| biblio.issue | 1 |
| biblio.volume | 8 |
| biblio.last_page | 11 |
| biblio.first_page | 11 |
| topics[0].id | https://openalex.org/T10581 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neural dynamics and brain function |
| topics[1].id | https://openalex.org/T13377 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Ecosystem dynamics and resilience |
| topics[2].id | https://openalex.org/T11513 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9883000254631042 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | stochastic dynamics and bifurcation |
| funders[0].id | https://openalex.org/F4320337380 |
| funders[0].ror | https://ror.org/051fftw81 |
| funders[0].display_name | Division of Mathematical Sciences |
| funders[1].id | https://openalex.org/F4320338295 |
| funders[1].ror | https://ror.org/011hc8f90 |
| funders[1].display_name | Army Research Laboratory |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7349193096160889 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C24552861 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7131755352020264 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2670177 |
| concepts[1].display_name | Data assimilation |
| concepts[2].id | https://openalex.org/C157286648 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6266769766807556 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[2].display_name | Kalman filter |
| concepts[3].id | https://openalex.org/C158622935 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5218856930732727 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[3].display_name | Nonlinear system |
| concepts[4].id | https://openalex.org/C167928553 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48327499628067017 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1376021 |
| concepts[4].display_name | Estimation theory |
| concepts[5].id | https://openalex.org/C2781349735 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4322808086872101 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4904824 |
| concepts[5].display_name | Bifurcation |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4302385449409485 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C106131492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4258320927619934 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[7].display_name | Filter (signal processing) |
| concepts[8].id | https://openalex.org/C48103436 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41542425751686096 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[8].display_name | State (computer science) |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.389876127243042 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3805748224258423 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.07920441031455994 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7349193096160889 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-assimilation |
| keywords[1].score | 0.7131755352020264 |
| keywords[1].display_name | Data assimilation |
| keywords[2].id | https://openalex.org/keywords/kalman-filter |
| keywords[2].score | 0.6266769766807556 |
| keywords[2].display_name | Kalman filter |
| keywords[3].id | https://openalex.org/keywords/nonlinear-system |
| keywords[3].score | 0.5218856930732727 |
| keywords[3].display_name | Nonlinear system |
| keywords[4].id | https://openalex.org/keywords/estimation-theory |
| keywords[4].score | 0.48327499628067017 |
| keywords[4].display_name | Estimation theory |
| keywords[5].id | https://openalex.org/keywords/bifurcation |
| keywords[5].score | 0.4322808086872101 |
| keywords[5].display_name | Bifurcation |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4302385449409485 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/filter |
| keywords[7].score | 0.4258320927619934 |
| keywords[7].display_name | Filter (signal processing) |
| keywords[8].id | https://openalex.org/keywords/state |
| keywords[8].score | 0.41542425751686096 |
| keywords[8].display_name | State (computer science) |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.389876127243042 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3805748224258423 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.07920441031455994 |
| keywords[11].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1186/s13408-018-0066-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035086643 |
| locations[0].source.issn | 2190-8567 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2190-8567 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The Journal of Mathematical Neuroscience |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://mathematical-neuroscience.springeropen.com/track/pdf/10.1186/s13408-018-0066-8 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Journal of Mathematical Neuroscience |
| locations[0].landing_page_url | https://doi.org/10.1186/s13408-018-0066-8 |
| locations[1].id | pmid:30094571 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of mathematical neuroscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/30094571 |
| locations[2].id | pmh:oai:doaj.org/article:fec96782883441e8b2f20f78fcc6afb6 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Journal of Mathematical Neuroscience, Vol 8, Iss 1, Pp 1-38 (2018) |
| locations[2].landing_page_url | https://doaj.org/article/fec96782883441e8b2f20f78fcc6afb6 |
| locations[3].id | pmh:oai:europepmc.org:5049314 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://europepmc.org/pmc/articles/PMC6085278 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:6085278 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | J Math Neurosci |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6085278 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5069105645 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6546-2084 |
| authorships[0].author.display_name | Matthew Moye |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I118118575 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematical Sciences & Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, USA |
| authorships[0].institutions[0].id | https://openalex.org/I118118575 |
| authorships[0].institutions[0].ror | https://ror.org/05e74xb87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I118118575 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | New Jersey Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthew J. Moye |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematical Sciences & Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, USA |
| authorships[1].author.id | https://openalex.org/A5063637873 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4711-1395 |
| authorships[1].author.display_name | Casey O. Diekman |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I118118575 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematical Sciences & Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, USA |
| authorships[1].institutions[0].id | https://openalex.org/I118118575 |
| authorships[1].institutions[0].ror | https://ror.org/05e74xb87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I118118575 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | New Jersey Institute of Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Casey O. Diekman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematical Sciences & Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://mathematical-neuroscience.springeropen.com/track/pdf/10.1186/s13408-018-0066-8 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data Assimilation Methods for Neuronal State and Parameter Estimation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10581 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neural dynamics and brain function |
| related_works | https://openalex.org/W2654527859, https://openalex.org/W1666666856, https://openalex.org/W2276167504, https://openalex.org/W3188177659, https://openalex.org/W2393565244, https://openalex.org/W2991924068, https://openalex.org/W2354857671, https://openalex.org/W2064102138, https://openalex.org/W2525014937, https://openalex.org/W2370409284 |
| cited_by_count | 38 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 11 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 4 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 1 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1186/s13408-018-0066-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035086643 |
| best_oa_location.source.issn | 2190-8567 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2190-8567 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | The Journal of Mathematical Neuroscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://mathematical-neuroscience.springeropen.com/track/pdf/10.1186/s13408-018-0066-8 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Journal of Mathematical Neuroscience |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s13408-018-0066-8 |
| primary_location.id | doi:10.1186/s13408-018-0066-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035086643 |
| primary_location.source.issn | 2190-8567 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2190-8567 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The Journal of Mathematical Neuroscience |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://mathematical-neuroscience.springeropen.com/track/pdf/10.1186/s13408-018-0066-8 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Journal of Mathematical Neuroscience |
| primary_location.landing_page_url | https://doi.org/10.1186/s13408-018-0066-8 |
| publication_date | 2018-08-09 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2981328134, https://openalex.org/W2097260237, https://openalex.org/W2065081586, https://openalex.org/W2072228305, https://openalex.org/W2013661409, https://openalex.org/W2153901968, https://openalex.org/W1789155650, https://openalex.org/W2251744767, https://openalex.org/W4233734028, https://openalex.org/W2123487311, https://openalex.org/W2098613108, https://openalex.org/W2165609874, https://openalex.org/W2043437580, https://openalex.org/W2034997740, https://openalex.org/W1972586138, https://openalex.org/W2126423185, https://openalex.org/W2507681944, https://openalex.org/W2259159835, https://openalex.org/W2075860462, https://openalex.org/W2728456202, https://openalex.org/W316919195, https://openalex.org/W2046424015, https://openalex.org/W1749494163, https://openalex.org/W1971536112, https://openalex.org/W2041684917, https://openalex.org/W2035072927, https://openalex.org/W2751583584, https://openalex.org/W2767578104, https://openalex.org/W2466655831, https://openalex.org/W6632565693, https://openalex.org/W2963219929, https://openalex.org/W2005126631, https://openalex.org/W1977318420, https://openalex.org/W2760421111, https://openalex.org/W4247915326, https://openalex.org/W2016765436, https://openalex.org/W2046594660, https://openalex.org/W2318920673, https://openalex.org/W1985039302, https://openalex.org/W2158987262, https://openalex.org/W4231204432, https://openalex.org/W2160444846, https://openalex.org/W1997016255, https://openalex.org/W1977997282, https://openalex.org/W2036426301, https://openalex.org/W2505883829, https://openalex.org/W2776819654, https://openalex.org/W2061834780, https://openalex.org/W2075691372, https://openalex.org/W2070595746, https://openalex.org/W2095807060, https://openalex.org/W2318976360, https://openalex.org/W2012701167, https://openalex.org/W2111701494, https://openalex.org/W2169347074, https://openalex.org/W2033500361, https://openalex.org/W2126105956, https://openalex.org/W2950487668, https://openalex.org/W2124849619, https://openalex.org/W1987938204, https://openalex.org/W1542177822, https://openalex.org/W2912400238, https://openalex.org/W1534657206, https://openalex.org/W1921511217, https://openalex.org/W1576838367, https://openalex.org/W1522319528, https://openalex.org/W1985940938, https://openalex.org/W1977151718, https://openalex.org/W2317176447, https://openalex.org/W2336496036, https://openalex.org/W2598912916, https://openalex.org/W2124049286, https://openalex.org/W3141507996, https://openalex.org/W3114792959, https://openalex.org/W3103677963, https://openalex.org/W2105553843, https://openalex.org/W2568598096, https://openalex.org/W2735595457 |
| referenced_works_count | 78 |
| abstract_inverted_index.a | 65, 92, 153, 180 |
| abstract_inverted_index.DA | 49, 133, 162, 194 |
| abstract_inverted_index.We | 57, 117, 187 |
| abstract_inverted_index.as | 179 |
| abstract_inverted_index.be | 40 |
| abstract_inverted_index.by | 189 |
| abstract_inverted_index.in | 28, 42, 112, 199 |
| abstract_inverted_index.of | 5, 16, 48, 64, 87, 106, 127, 161, 176, 184, 192 |
| abstract_inverted_index.on | 97 |
| abstract_inverted_index.to | 9, 39, 79, 83, 110, 152, 164 |
| abstract_inverted_index.The | 44 |
| abstract_inverted_index.and | 13, 31, 54, 74, 76, 168, 171 |
| abstract_inverted_index.are | 25, 51 |
| abstract_inverted_index.but | 34 |
| abstract_inverted_index.can | 135 |
| abstract_inverted_index.due | 109 |
| abstract_inverted_index.how | 78 |
| abstract_inverted_index.the | 3, 70, 88, 99, 113, 128, 132, 141, 159, 173, 200 |
| abstract_inverted_index.two | 45 |
| abstract_inverted_index.use | 4, 80 |
| abstract_inverted_index.(DA) | 23 |
| abstract_inverted_index.This | 0, 157 |
| abstract_inverted_index.code | 60 |
| abstract_inverted_index.data | 6, 21 |
| abstract_inverted_index.each | 68, 126 |
| abstract_inverted_index.even | 145 |
| abstract_inverted_index.from | 67, 91, 125 |
| abstract_inverted_index.have | 35, 197 |
| abstract_inverted_index.main | 46 |
| abstract_inverted_index.only | 36 |
| abstract_inverted_index.sets | 138 |
| abstract_inverted_index.show | 118 |
| abstract_inverted_index.that | 119, 139, 150, 196 |
| abstract_inverted_index.used | 27 |
| abstract_inverted_index.when | 120 |
| abstract_inverted_index.with | 122, 146 |
| abstract_inverted_index.basic | 62 |
| abstract_inverted_index.begun | 38 |
| abstract_inverted_index.infer | 84 |
| abstract_inverted_index.model | 90, 101 |
| abstract_inverted_index.novel | 181 |
| abstract_inverted_index.state | 167 |
| abstract_inverted_index.these | 81, 193 |
| abstract_inverted_index.types | 105 |
| abstract_inverted_index.Filter | 73 |
| abstract_inverted_index.Kalman | 72 |
| abstract_inverted_index.Modern | 20 |
| abstract_inverted_index.class, | 69 |
| abstract_inverted_index.method | 66 |
| abstract_inverted_index.models | 178 |
| abstract_inverted_index.single | 93 |
| abstract_inverted_index.trace. | 95 |
| abstract_inverted_index.traces | 124 |
| abstract_inverted_index.widely | 26 |
| abstract_inverted_index.4D-Var, | 75 |
| abstract_inverted_index.ability | 160 |
| abstract_inverted_index.applied | 41 |
| abstract_inverted_index.changes | 111 |
| abstract_inverted_index.classes | 47 |
| abstract_inverted_index.climate | 29 |
| abstract_inverted_index.correct | 142 |
| abstract_inverted_index.guesses | 149 |
| abstract_inverted_index.initial | 147 |
| abstract_inverted_index.measure | 183 |
| abstract_inverted_index.methods | 53, 134 |
| abstract_inverted_index.models. | 19 |
| abstract_inverted_index.perform | 165 |
| abstract_inverted_index.produce | 140 |
| abstract_inverted_index.provide | 58 |
| abstract_inverted_index.regime. | 156 |
| abstract_inverted_index.science | 30 |
| abstract_inverted_index.several | 85 |
| abstract_inverted_index.unknown | 14 |
| abstract_inverted_index.various | 129 |
| abstract_inverted_index.voltage | 94, 123 |
| abstract_inverted_index.weather | 32 |
| abstract_inverted_index.appeared | 198 |
| abstract_inverted_index.computer | 59 |
| abstract_inverted_index.conclude | 188 |
| abstract_inverted_index.estimate | 10 |
| abstract_inverted_index.exhibits | 102 |
| abstract_inverted_index.identify | 136 |
| abstract_inverted_index.inferred | 177 |
| abstract_inverted_index.methods. | 56 |
| abstract_inverted_index.neuronal | 18, 107 |
| abstract_inverted_index.recently | 37 |
| abstract_inverted_index.regimes, | 131 |
| abstract_inverted_index.success. | 186 |
| abstract_inverted_index.tutorial | 1 |
| abstract_inverted_index.versions | 63 |
| abstract_inverted_index.Depending | 96 |
| abstract_inverted_index.Unscented | 71 |
| abstract_inverted_index.different | 104, 154 |
| abstract_inverted_index.geometric | 174 |
| abstract_inverted_index.nonlinear | 166 |
| abstract_inverted_index.parameter | 137, 148, 169 |
| abstract_inverted_index.presented | 121 |
| abstract_inverted_index.structure | 144, 175 |
| abstract_inverted_index.variables | 12 |
| abstract_inverted_index.algorithms | 8, 82, 195 |
| abstract_inverted_index.correspond | 151 |
| abstract_inverted_index.discussing | 190 |
| abstract_inverted_index.estimation | 170, 185 |
| abstract_inverted_index.extensions | 191 |
| abstract_inverted_index.introduces | 172 |
| abstract_inverted_index.parameters | 15, 86 |
| abstract_inverted_index.sequential | 52 |
| abstract_inverted_index.structure. | 116 |
| abstract_inverted_index.techniques | 24, 50, 163 |
| abstract_inverted_index.underlying | 114 |
| abstract_inverted_index.unobserved | 11 |
| abstract_inverted_index.bifurcation | 115, 143 |
| abstract_inverted_index.demonstrate | 77 |
| abstract_inverted_index.illustrates | 2 |
| abstract_inverted_index.literature. | 202 |
| abstract_inverted_index.parameters, | 98 |
| abstract_inverted_index.prediction, | 33 |
| abstract_inverted_index.qualitative | 182 |
| abstract_inverted_index.variational | 55 |
| abstract_inverted_index.Morris-Lecar | 89, 100 |
| abstract_inverted_index.assimilation | 7, 22 |
| abstract_inverted_index.demonstrates | 158 |
| abstract_inverted_index.excitability | 108, 130, 155 |
| abstract_inverted_index.implementing | 61 |
| abstract_inverted_index.neuroscience | 201 |
| abstract_inverted_index.neuroscience. | 43 |
| abstract_inverted_index.qualitatively | 103 |
| abstract_inverted_index.conductance-based | 17 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.85405493 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |