Data Cleaning Process for mHealth Log Data to Inform Health Worker Performance Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3233/shti220664
Log data, captured during use of mobile health (mHealth) applications by health providers, can play an important role in informing nature of user engagement with the application. The log data can also be employed in understanding health provider work patterns and performance. However, given that these logs are raw data, they require robust cleaning and curation if accurate conclusions are to be derived from analyzing them. This paper describes a systematic data cleaning process for mHealth-derived logs based on Broeck’s framework, which involves iterative screening, diagnosis, and treatment of the log data. For this study, log data from the demonstrative mUzima mHealth application are used. The employed data cleaning process uncovered data inconsistencies, duplicate logs, missing data within logs that required imputation, among other issues. After the data cleaning process, only 39,229 log records out of the initial 91,432 usage logs (42.9%) could be included in the final dataset suitable for analyses of health provider work patterns. This work highlights the significance of having a systematic data cleaning approach for log data to derive useful information on health provider work patterns and performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3233/shti220664
- https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220664
- OA Status
- hybrid
- Cited By
- 2
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283725646
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283725646Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/shti220664Digital Object Identifier
- Title
-
Data Cleaning Process for mHealth Log Data to Inform Health Worker PerformanceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-29Full publication date if available
- Authors
-
Simon Savai, Md Kamrul Hasan, Jemima Kamano, Lawrence Misoi, Peter Wakholi, Martin C. WereList of authors in order
- Landing page
-
https://doi.org/10.3233/shti220664Publisher landing page
- PDF URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220664Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220664Direct OA link when available
- Concepts
-
mHealth, Computer science, Raw data, Imputation (statistics), Data science, Process (computing), Data mining, Missing data, Health care, Machine learning, Programming language, Operating system, Economic growth, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283725646 |
|---|---|
| doi | https://doi.org/10.3233/shti220664 |
| ids.doi | https://doi.org/10.3233/shti220664 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35773810 |
| ids.openalex | https://openalex.org/W4283725646 |
| fwci | 1.85212634 |
| mesh[0].qualifier_ui | Q000592 |
| mesh[0].descriptor_ui | D003625 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | standards |
| mesh[0].descriptor_name | Data Collection |
| mesh[1].qualifier_ui | Q000379 |
| mesh[1].descriptor_ui | D004650 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | methods |
| mesh[1].descriptor_name | Employee Performance Appraisal |
| mesh[2].qualifier_ui | Q000592 |
| mesh[2].descriptor_ui | D004650 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | standards |
| mesh[2].descriptor_name | Employee Performance Appraisal |
| mesh[3].qualifier_ui | Q000639 |
| mesh[3].descriptor_ui | D004650 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | trends |
| mesh[3].descriptor_name | Employee Performance Appraisal |
| mesh[4].qualifier_ui | Q000592 |
| mesh[4].descriptor_ui | D006282 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | standards |
| mesh[4].descriptor_name | Health Personnel |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D063731 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Mobile Applications |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D017216 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Telemedicine |
| mesh[7].qualifier_ui | Q000592 |
| mesh[7].descriptor_ui | D003625 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | standards |
| mesh[7].descriptor_name | Data Collection |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D004650 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Employee Performance Appraisal |
| mesh[9].qualifier_ui | Q000592 |
| mesh[9].descriptor_ui | D004650 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | standards |
| mesh[9].descriptor_name | Employee Performance Appraisal |
| mesh[10].qualifier_ui | Q000639 |
| mesh[10].descriptor_ui | D004650 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | trends |
| mesh[10].descriptor_name | Employee Performance Appraisal |
| mesh[11].qualifier_ui | Q000592 |
| mesh[11].descriptor_ui | D006282 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | standards |
| mesh[11].descriptor_name | Health Personnel |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D063731 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Mobile Applications |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D017216 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Telemedicine |
| type | article |
| title | Data Cleaning Process for mHealth Log Data to Inform Health Worker Performance |
| biblio.issue | |
| biblio.volume | 295 |
| biblio.last_page | 78 |
| biblio.first_page | 75 |
| topics[0].id | https://openalex.org/T11719 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9764000177383423 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Data Quality and Management |
| topics[1].id | https://openalex.org/T10444 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9319999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Context-Aware Activity Recognition Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779363104 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7946490049362183 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17069079 |
| concepts[0].display_name | mHealth |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5760399103164673 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C132964779 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5738479495048523 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2110223 |
| concepts[2].display_name | Raw data |
| concepts[3].id | https://openalex.org/C58041806 |
| concepts[3].level | 3 |
| concepts[3].score | 0.47825634479522705 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1660484 |
| concepts[3].display_name | Imputation (statistics) |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4748052656650543 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C98045186 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4533859193325043 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[5].display_name | Process (computing) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43781036138534546 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C9357733 |
| concepts[7].level | 2 |
| concepts[7].score | 0.40558552742004395 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[7].display_name | Missing data |
| concepts[8].id | https://openalex.org/C160735492 |
| concepts[8].level | 2 |
| concepts[8].score | 0.23878705501556396 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[8].display_name | Health care |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07654052972793579 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| concepts[11].id | https://openalex.org/C111919701 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[11].display_name | Operating system |
| concepts[12].id | https://openalex.org/C50522688 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[12].display_name | Economic growth |
| concepts[13].id | https://openalex.org/C162324750 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[13].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/mhealth |
| keywords[0].score | 0.7946490049362183 |
| keywords[0].display_name | mHealth |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5760399103164673 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/raw-data |
| keywords[2].score | 0.5738479495048523 |
| keywords[2].display_name | Raw data |
| keywords[3].id | https://openalex.org/keywords/imputation |
| keywords[3].score | 0.47825634479522705 |
| keywords[3].display_name | Imputation (statistics) |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.4748052656650543 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/process |
| keywords[5].score | 0.4533859193325043 |
| keywords[5].display_name | Process (computing) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.43781036138534546 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/missing-data |
| keywords[7].score | 0.40558552742004395 |
| keywords[7].display_name | Missing data |
| keywords[8].id | https://openalex.org/keywords/health-care |
| keywords[8].score | 0.23878705501556396 |
| keywords[8].display_name | Health care |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.07654052972793579 |
| keywords[9].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.3233/shti220664 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179765 |
| locations[0].source.issn | 0926-9630, 1879-8365 |
| locations[0].source.type | book series |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0926-9630 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Studies in health technology and informatics |
| locations[0].source.host_organization | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_name | IOS Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318577 |
| locations[0].source.host_organization_lineage_names | IOS Press |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220664 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Studies in Health Technology and Informatics |
| locations[0].landing_page_url | https://doi.org/10.3233/shti220664 |
| locations[1].id | pmid:35773810 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Studies in health technology and informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35773810 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5027462838 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6353-0904 |
| authorships[0].author.display_name | Simon Savai |
| authorships[0].countries | KE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I147168166 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Biomedical Informatics, Moi University, Eldoret, Kenya |
| authorships[0].institutions[0].id | https://openalex.org/I147168166 |
| authorships[0].institutions[0].ror | https://ror.org/04p6eac84 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I147168166 |
| authorships[0].institutions[0].country_code | KE |
| authorships[0].institutions[0].display_name | Moi University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Simon Muhindi Savai |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute of Biomedical Informatics, Moi University, Eldoret, Kenya |
| authorships[1].author.id | https://openalex.org/A5103042438 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5800-0172 |
| authorships[1].author.display_name | Md Kamrul Hasan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200719446 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Vanderbilt University, TN, USA |
| authorships[1].institutions[0].id | https://openalex.org/I200719446 |
| authorships[1].institutions[0].ror | https://ror.org/02vm5rt34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200719446 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Vanderbilt University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Md Kamrul Hasan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Vanderbilt University, TN, USA |
| authorships[2].author.id | https://openalex.org/A5018340392 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2179-8202 |
| authorships[2].author.display_name | Jemima Kamano |
| authorships[2].countries | KE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I147168166 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Medicine, Moi University, Eldoret, Kenya |
| authorships[2].institutions[0].id | https://openalex.org/I147168166 |
| authorships[2].institutions[0].ror | https://ror.org/04p6eac84 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I147168166 |
| authorships[2].institutions[0].country_code | KE |
| authorships[2].institutions[0].display_name | Moi University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jemimah Kamano |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Medicine, Moi University, Eldoret, Kenya |
| authorships[3].author.id | https://openalex.org/A5020586958 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Lawrence Misoi |
| authorships[3].countries | KE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I147168166 |
| authorships[3].affiliations[0].raw_affiliation_string | Moi Teaching and Referral Hospital, Eldoret, Kenya |
| authorships[3].institutions[0].id | https://openalex.org/I147168166 |
| authorships[3].institutions[0].ror | https://ror.org/04p6eac84 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I147168166 |
| authorships[3].institutions[0].country_code | KE |
| authorships[3].institutions[0].display_name | Moi University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lawrence Misoi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Moi Teaching and Referral Hospital, Eldoret, Kenya |
| authorships[4].author.id | https://openalex.org/A5053446524 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0770-7995 |
| authorships[4].author.display_name | Peter Wakholi |
| authorships[4].countries | UG |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I72227227 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computing and Informatics Technology, Makerere University, Kampala |
| authorships[4].institutions[0].id | https://openalex.org/I72227227 |
| authorships[4].institutions[0].ror | https://ror.org/03dmz0111 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I72227227 |
| authorships[4].institutions[0].country_code | UG |
| authorships[4].institutions[0].display_name | Makerere University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Peter Wakholi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computing and Informatics Technology, Makerere University, Kampala |
| authorships[5].author.id | https://openalex.org/A5074390092 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3010-011X |
| authorships[5].author.display_name | Martin C. Were |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, VUMC, Nashville, TN, USA |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Martin C. Were |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biomedical Informatics, VUMC, Nashville, TN, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220664 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data Cleaning Process for mHealth Log Data to Inform Health Worker Performance |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11719 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9764000177383423 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Data Quality and Management |
| related_works | https://openalex.org/W2541565311, https://openalex.org/W3049453136, https://openalex.org/W2784019465, https://openalex.org/W569810835, https://openalex.org/W2900766238, https://openalex.org/W1973721774, https://openalex.org/W2751555317, https://openalex.org/W2777581963, https://openalex.org/W4362472286, https://openalex.org/W2611466779 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3233/shti220664 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179765 |
| best_oa_location.source.issn | 0926-9630, 1879-8365 |
| best_oa_location.source.type | book series |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0926-9630 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Studies in health technology and informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_name | IOS Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| best_oa_location.source.host_organization_lineage_names | IOS Press |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220664 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Studies in Health Technology and Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.3233/shti220664 |
| primary_location.id | doi:10.3233/shti220664 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179765 |
| primary_location.source.issn | 0926-9630, 1879-8365 |
| primary_location.source.type | book series |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0926-9630 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Studies in health technology and informatics |
| primary_location.source.host_organization | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_name | IOS Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318577 |
| primary_location.source.host_organization_lineage_names | IOS Press |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/SHTI220664 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Studies in Health Technology and Informatics |
| primary_location.landing_page_url | https://doi.org/10.3233/shti220664 |
| publication_date | 2022-06-29 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2897027864, https://openalex.org/W2991399037, https://openalex.org/W2752570039, https://openalex.org/W4200541525, https://openalex.org/W1971935224 |
| referenced_works_count | 5 |
| abstract_inverted_index.a | 69, 164 |
| abstract_inverted_index.an | 15 |
| abstract_inverted_index.be | 32, 61, 143 |
| abstract_inverted_index.by | 10 |
| abstract_inverted_index.if | 56 |
| abstract_inverted_index.in | 18, 34, 145 |
| abstract_inverted_index.of | 5, 21, 88, 135, 152, 162 |
| abstract_inverted_index.on | 78, 176 |
| abstract_inverted_index.to | 60, 172 |
| abstract_inverted_index.For | 92 |
| abstract_inverted_index.Log | 0 |
| abstract_inverted_index.The | 27, 105 |
| abstract_inverted_index.and | 40, 54, 86, 181 |
| abstract_inverted_index.are | 47, 59, 103 |
| abstract_inverted_index.can | 13, 30 |
| abstract_inverted_index.for | 74, 150, 169 |
| abstract_inverted_index.log | 28, 90, 95, 132, 170 |
| abstract_inverted_index.out | 134 |
| abstract_inverted_index.raw | 48 |
| abstract_inverted_index.the | 25, 89, 98, 126, 136, 146, 160 |
| abstract_inverted_index.use | 4 |
| abstract_inverted_index.This | 66, 157 |
| abstract_inverted_index.also | 31 |
| abstract_inverted_index.data | 29, 71, 96, 107, 111, 116, 127, 166, 171 |
| abstract_inverted_index.from | 63, 97 |
| abstract_inverted_index.logs | 46, 76, 118, 140 |
| abstract_inverted_index.only | 130 |
| abstract_inverted_index.play | 14 |
| abstract_inverted_index.role | 17 |
| abstract_inverted_index.that | 44, 119 |
| abstract_inverted_index.they | 50 |
| abstract_inverted_index.this | 93 |
| abstract_inverted_index.user | 22 |
| abstract_inverted_index.with | 24 |
| abstract_inverted_index.work | 38, 155, 158, 179 |
| abstract_inverted_index.After | 125 |
| abstract_inverted_index.among | 122 |
| abstract_inverted_index.based | 77 |
| abstract_inverted_index.could | 142 |
| abstract_inverted_index.data, | 1, 49 |
| abstract_inverted_index.data. | 91 |
| abstract_inverted_index.final | 147 |
| abstract_inverted_index.given | 43 |
| abstract_inverted_index.logs, | 114 |
| abstract_inverted_index.other | 123 |
| abstract_inverted_index.paper | 67 |
| abstract_inverted_index.them. | 65 |
| abstract_inverted_index.these | 45 |
| abstract_inverted_index.usage | 139 |
| abstract_inverted_index.used. | 104 |
| abstract_inverted_index.which | 81 |
| abstract_inverted_index.39,229 | 131 |
| abstract_inverted_index.91,432 | 138 |
| abstract_inverted_index.derive | 173 |
| abstract_inverted_index.during | 3 |
| abstract_inverted_index.having | 163 |
| abstract_inverted_index.health | 7, 11, 36, 153, 177 |
| abstract_inverted_index.mUzima | 100 |
| abstract_inverted_index.mobile | 6 |
| abstract_inverted_index.nature | 20 |
| abstract_inverted_index.robust | 52 |
| abstract_inverted_index.study, | 94 |
| abstract_inverted_index.useful | 174 |
| abstract_inverted_index.within | 117 |
| abstract_inverted_index.(42.9%) | 141 |
| abstract_inverted_index.dataset | 148 |
| abstract_inverted_index.derived | 62 |
| abstract_inverted_index.initial | 137 |
| abstract_inverted_index.issues. | 124 |
| abstract_inverted_index.mHealth | 101 |
| abstract_inverted_index.missing | 115 |
| abstract_inverted_index.process | 73, 109 |
| abstract_inverted_index.records | 133 |
| abstract_inverted_index.require | 51 |
| abstract_inverted_index.However, | 42 |
| abstract_inverted_index.accurate | 57 |
| abstract_inverted_index.analyses | 151 |
| abstract_inverted_index.approach | 168 |
| abstract_inverted_index.captured | 2 |
| abstract_inverted_index.cleaning | 53, 72, 108, 128, 167 |
| abstract_inverted_index.curation | 55 |
| abstract_inverted_index.employed | 33, 106 |
| abstract_inverted_index.included | 144 |
| abstract_inverted_index.involves | 82 |
| abstract_inverted_index.patterns | 39, 180 |
| abstract_inverted_index.process, | 129 |
| abstract_inverted_index.provider | 37, 154, 178 |
| abstract_inverted_index.required | 120 |
| abstract_inverted_index.suitable | 149 |
| abstract_inverted_index.(mHealth) | 8 |
| abstract_inverted_index.analyzing | 64 |
| abstract_inverted_index.describes | 68 |
| abstract_inverted_index.duplicate | 113 |
| abstract_inverted_index.important | 16 |
| abstract_inverted_index.informing | 19 |
| abstract_inverted_index.iterative | 83 |
| abstract_inverted_index.patterns. | 156 |
| abstract_inverted_index.treatment | 87 |
| abstract_inverted_index.uncovered | 110 |
| abstract_inverted_index.Broeck’s | 79 |
| abstract_inverted_index.diagnosis, | 85 |
| abstract_inverted_index.engagement | 23 |
| abstract_inverted_index.framework, | 80 |
| abstract_inverted_index.highlights | 159 |
| abstract_inverted_index.providers, | 12 |
| abstract_inverted_index.screening, | 84 |
| abstract_inverted_index.systematic | 70, 165 |
| abstract_inverted_index.application | 102 |
| abstract_inverted_index.conclusions | 58 |
| abstract_inverted_index.imputation, | 121 |
| abstract_inverted_index.information | 175 |
| abstract_inverted_index.application. | 26 |
| abstract_inverted_index.applications | 9 |
| abstract_inverted_index.performance. | 41, 182 |
| abstract_inverted_index.significance | 161 |
| abstract_inverted_index.demonstrative | 99 |
| abstract_inverted_index.understanding | 35 |
| abstract_inverted_index.mHealth-derived | 75 |
| abstract_inverted_index.inconsistencies, | 112 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5027462838 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I147168166 |
| citation_normalized_percentile.value | 0.82747664 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |