Data-driven automated classification algorithms for acute health conditions: applying PheNorm to COVID-19 disease Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1093/jamia/ocad241
Objectives Automated phenotyping algorithms can reduce development time and operator dependence compared to manually developed algorithms. One such approach, PheNorm, has performed well for identifying chronic health conditions, but its performance for acute conditions is largely unknown. Herein, we implement and evaluate PheNorm applied to symptomatic COVID-19 disease to investigate its potential feasibility for rapid phenotyping of acute health conditions. Materials and methods PheNorm is a general-purpose automated approach to creating computable phenotype algorithms based on natural language processing, machine learning, and (low cost) silver-standard training labels. We applied PheNorm to cohorts of potential COVID-19 patients from 2 institutions and used gold-standard manual chart review data to investigate the impact on performance of alternative feature engineering options and implementing externally trained models without local retraining. Results Models at each institution achieved AUC, sensitivity, and positive predictive value of 0.853, 0.879, 0.851 and 0.804, 0.976, and 0.885, respectively, at quantiles of model-predicted risk that maximize F1. We report performance metrics for all combinations of silver labels, feature engineering options, and models trained internally versus externally. Discussion Phenotyping algorithms developed using PheNorm performed well at both institutions. Performance varied with different silver-standard labels and feature engineering options. Models developed locally at one site also worked well when implemented externally at the other site. Conclusion PheNorm models successfully identified an acute health condition, symptomatic COVID-19. The simplicity of the PheNorm approach allows it to be applied at multiple study sites with substantially reduced overhead compared to traditional approaches.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/jamia/ocad241
- OA Status
- green
- Cited By
- 7
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389903773
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389903773Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/jamia/ocad241Digital Object Identifier
- Title
-
Data-driven automated classification algorithms for acute health conditions: applying PheNorm to COVID-19 diseaseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-18Full publication date if available
- Authors
-
Joshua Smith, Brian D. Williamson, David Cronkite, Daniel Park, Jill M Whitaker, Michael F McLemore, Joshua T Osmanski, Robert Winter, Arvind Ramaprasan, Ann E. Kelley, Mary Shea, Saranrat Wittayanukorn, Danijela Stojanović, Yueqin Zhao, Sengwee Toh, Kevin B. Johnson, David M. Aronoff, David CarrellList of authors in order
- Landing page
-
https://doi.org/10.1093/jamia/ocad241Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10873852/pdf/ocad241.pdfDirect OA link when available
- Concepts
-
Feature engineering, Computer science, Machine learning, Artificial intelligence, Feature (linguistics), Algorithm, Overhead (engineering), Gold standard (test), Coronavirus disease 2019 (COVID-19), Data mining, Medicine, Disease, Deep learning, Mathematics, Statistics, Operating system, Philosophy, Pathology, Infectious disease (medical specialty), LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389903773 |
|---|---|
| doi | https://doi.org/10.1093/jamia/ocad241 |
| ids.doi | https://doi.org/10.1093/jamia/ocad241 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38109888 |
| ids.openalex | https://openalex.org/W4389903773 |
| fwci | 1.78810021 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D012834 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Silver |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D057286 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Electronic Health Records |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000086382 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | COVID-19 |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000465 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Algorithms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D009323 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Natural Language Processing |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D000465 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Algorithms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000086382 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | COVID-19 |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D057286 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Electronic Health Records |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000069550 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Machine Learning |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D009323 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Natural Language Processing |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000465 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Algorithms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000086382 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | COVID-19 |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D057286 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Electronic Health Records |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000069550 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Machine Learning |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D009323 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Natural Language Processing |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D006801 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Humans |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000465 |
| mesh[20].is_major_topic | True |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Algorithms |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000086382 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | COVID-19 |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D057286 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Electronic Health Records |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000069550 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Machine Learning |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D009323 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Natural Language Processing |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006801 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Humans |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000465 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Algorithms |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000086382 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | COVID-19 |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D057286 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Electronic Health Records |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000069550 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Machine Learning |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D009323 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Natural Language Processing |
| type | article |
| title | Data-driven automated classification algorithms for acute health conditions: applying PheNorm to COVID-19 disease |
| awards[0].id | https://openalex.org/G4410787187 |
| awards[0].funder_id | https://openalex.org/F4320313998 |
| awards[0].display_name | |
| awards[0].funder_award_id | UL1 TR002243 |
| awards[0].funder_display_name | Vanderbilt University Medical Center |
| biblio.issue | 3 |
| biblio.volume | 31 |
| biblio.last_page | 582 |
| biblio.first_page | 574 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T12026 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.970300018787384 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Explainable Artificial Intelligence (XAI) |
| funders[0].id | https://openalex.org/F4320313998 |
| funders[0].ror | https://ror.org/05dq2gs74 |
| funders[0].display_name | Vanderbilt University Medical Center |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| funders[2].id | https://openalex.org/F4320332163 |
| funders[2].ror | https://ror.org/034xvzb47 |
| funders[2].display_name | U.S. Food and Drug Administration |
| funders[3].id | https://openalex.org/F4320337472 |
| funders[3].ror | https://ror.org/04pw6fb54 |
| funders[3].display_name | National Center for Advancing Translational Sciences |
| is_xpac | False |
| apc_list.value | 3967 |
| apc_list.currency | USD |
| apc_list.value_usd | 3967 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778827112 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6774038076400757 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[0].display_name | Feature engineering |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6394586563110352 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6252034902572632 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5767773389816284 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5412231683731079 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5350967645645142 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C2779960059 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5276573896408081 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[6].display_name | Overhead (engineering) |
| concepts[7].id | https://openalex.org/C40993552 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48101434111595154 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q514654 |
| concepts[7].display_name | Gold standard (test) |
| concepts[8].id | https://openalex.org/C3008058167 |
| concepts[8].level | 4 |
| concepts[8].score | 0.4675627648830414 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[8].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32626980543136597 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.23514270782470703 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C2779134260 |
| concepts[11].level | 2 |
| concepts[11].score | 0.19310280680656433 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[11].display_name | Disease |
| concepts[12].id | https://openalex.org/C108583219 |
| concepts[12].level | 2 |
| concepts[12].score | 0.17603716254234314 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep learning |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.14970442652702332 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1212950050830841 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C142724271 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[17].display_name | Pathology |
| concepts[18].id | https://openalex.org/C524204448 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[18].display_name | Infectious disease (medical specialty) |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/feature-engineering |
| keywords[0].score | 0.6774038076400757 |
| keywords[0].display_name | Feature engineering |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6394586563110352 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6252034902572632 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5767773389816284 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.5412231683731079 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.5350967645645142 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/overhead |
| keywords[6].score | 0.5276573896408081 |
| keywords[6].display_name | Overhead (engineering) |
| keywords[7].id | https://openalex.org/keywords/gold-standard |
| keywords[7].score | 0.48101434111595154 |
| keywords[7].display_name | Gold standard (test) |
| keywords[8].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[8].score | 0.4675627648830414 |
| keywords[8].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.32626980543136597 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.23514270782470703 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/disease |
| keywords[11].score | 0.19310280680656433 |
| keywords[11].display_name | Disease |
| keywords[12].id | https://openalex.org/keywords/deep-learning |
| keywords[12].score | 0.17603716254234314 |
| keywords[12].display_name | Deep learning |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.14970442652702332 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.1212950050830841 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1093/jamia/ocad241 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S129839026 |
| locations[0].source.issn | 1067-5027, 1527-974X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1067-5027 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the American Medical Informatics Association |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the American Medical Informatics Association |
| locations[0].landing_page_url | https://doi.org/10.1093/jamia/ocad241 |
| locations[1].id | pmid:38109888 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of the American Medical Informatics Association : JAMIA |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38109888 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10873852 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10873852/pdf/ocad241.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Am Med Inform Assoc |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10873852 |
| locations[3].id | pmh:oai:scholarworks.indianapolis.iu.edu:1805/45403 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306522653 |
| locations[3].source.issn | |
| locations[3].source.type | journal |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | True |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PMC |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PMC |
| locations[3].landing_page_url | https://hdl.handle.net/1805/45403 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5102928402 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2661-3203 |
| authorships[0].author.display_name | Joshua Smith |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[0].institutions[0].id | https://openalex.org/I901861585 |
| authorships[0].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Joshua C Smith |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[1].author.id | https://openalex.org/A5103218929 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7024-548X |
| authorships[1].author.display_name | Brian D. Williamson |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150117356 |
| authorships[1].affiliations[0].raw_affiliation_string | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[1].institutions[0].id | https://openalex.org/I150117356 |
| authorships[1].institutions[0].ror | https://ror.org/0027frf26 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I150117356 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Kaiser Permanente Washington Health Research Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Brian D Williamson |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[2].author.id | https://openalex.org/A5054315152 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2797-5102 |
| authorships[2].author.display_name | David Cronkite |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I150117356 |
| authorships[2].affiliations[0].raw_affiliation_string | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[2].institutions[0].id | https://openalex.org/I150117356 |
| authorships[2].institutions[0].ror | https://ror.org/0027frf26 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I150117356 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Kaiser Permanente Washington Health Research Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | David J Cronkite |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[3].author.id | https://openalex.org/A5100613715 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1919-0460 |
| authorships[3].author.display_name | Daniel Park |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[3].institutions[0].id | https://openalex.org/I901861585 |
| authorships[3].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daniel Park |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[4].author.id | https://openalex.org/A5113074453 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jill M Whitaker |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[4].institutions[0].id | https://openalex.org/I901861585 |
| authorships[4].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jill M Whitaker |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[5].author.id | https://openalex.org/A5087712761 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Michael F McLemore |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[5].institutions[0].id | https://openalex.org/I901861585 |
| authorships[5].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Michael F McLemore |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[6].author.id | https://openalex.org/A5093524480 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Joshua T Osmanski |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[6].institutions[0].id | https://openalex.org/I901861585 |
| authorships[6].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Joshua T Osmanski |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[7].author.id | https://openalex.org/A5017394048 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5013-503X |
| authorships[7].author.display_name | Robert Winter |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[7].institutions[0].id | https://openalex.org/I901861585 |
| authorships[7].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Robert Winter |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Biomedical Informatics, Vanderbilt University Medical Center , Nashville, TN 37203, United States |
| authorships[8].author.id | https://openalex.org/A5059181194 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Arvind Ramaprasan |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I150117356 |
| authorships[8].affiliations[0].raw_affiliation_string | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[8].institutions[0].id | https://openalex.org/I150117356 |
| authorships[8].institutions[0].ror | https://ror.org/0027frf26 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I150117356 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Kaiser Permanente Washington Health Research Institute |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Arvind Ramaprasan |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[9].author.id | https://openalex.org/A5110135634 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Ann E. Kelley |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I150117356 |
| authorships[9].affiliations[0].raw_affiliation_string | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[9].institutions[0].id | https://openalex.org/I150117356 |
| authorships[9].institutions[0].ror | https://ror.org/0027frf26 |
| authorships[9].institutions[0].type | healthcare |
| authorships[9].institutions[0].lineage | https://openalex.org/I150117356 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Kaiser Permanente Washington Health Research Institute |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Ann Kelley |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[10].author.id | https://openalex.org/A5111064125 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Mary Shea |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I150117356 |
| authorships[10].affiliations[0].raw_affiliation_string | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[10].institutions[0].id | https://openalex.org/I150117356 |
| authorships[10].institutions[0].ror | https://ror.org/0027frf26 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I150117356 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Kaiser Permanente Washington Health Research Institute |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Mary Shea |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[11].author.id | https://openalex.org/A5021256390 |
| authorships[11].author.orcid | https://orcid.org/0000-0001-7371-677X |
| authorships[11].author.display_name | Saranrat Wittayanukorn |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I1320320070, https://openalex.org/I1333606569 |
| authorships[11].affiliations[0].raw_affiliation_string | Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, MD 20903, United States |
| authorships[11].institutions[0].id | https://openalex.org/I1333606569 |
| authorships[11].institutions[0].ror | https://ror.org/00yf3tm42 |
| authorships[11].institutions[0].type | facility |
| authorships[11].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1320320070, https://openalex.org/I1333606569 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | Center for Drug Evaluation and Research |
| authorships[11].institutions[1].id | https://openalex.org/I1320320070 |
| authorships[11].institutions[1].ror | https://ror.org/034xvzb47 |
| authorships[11].institutions[1].type | government |
| authorships[11].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1320320070 |
| authorships[11].institutions[1].country_code | US |
| authorships[11].institutions[1].display_name | United States Food and Drug Administration |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Saranrat Wittayanukorn |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, MD 20903, United States |
| authorships[12].author.id | https://openalex.org/A5102905653 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-7814-7625 |
| authorships[12].author.display_name | Danijela Stojanović |
| authorships[12].countries | US |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I1320320070, https://openalex.org/I1333606569 |
| authorships[12].affiliations[0].raw_affiliation_string | Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, MD 20903, United States |
| authorships[12].institutions[0].id | https://openalex.org/I1333606569 |
| authorships[12].institutions[0].ror | https://ror.org/00yf3tm42 |
| authorships[12].institutions[0].type | facility |
| authorships[12].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1320320070, https://openalex.org/I1333606569 |
| authorships[12].institutions[0].country_code | US |
| authorships[12].institutions[0].display_name | Center for Drug Evaluation and Research |
| authorships[12].institutions[1].id | https://openalex.org/I1320320070 |
| authorships[12].institutions[1].ror | https://ror.org/034xvzb47 |
| authorships[12].institutions[1].type | government |
| authorships[12].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1320320070 |
| authorships[12].institutions[1].country_code | US |
| authorships[12].institutions[1].display_name | United States Food and Drug Administration |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Danijela Stojanovic |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, MD 20903, United States |
| authorships[13].author.id | https://openalex.org/A5021380975 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Yueqin Zhao |
| authorships[13].countries | US |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I1320320070, https://openalex.org/I1333606569 |
| authorships[13].affiliations[0].raw_affiliation_string | Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, MD 20903, United States |
| authorships[13].institutions[0].id | https://openalex.org/I1333606569 |
| authorships[13].institutions[0].ror | https://ror.org/00yf3tm42 |
| authorships[13].institutions[0].type | facility |
| authorships[13].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1320320070, https://openalex.org/I1333606569 |
| authorships[13].institutions[0].country_code | US |
| authorships[13].institutions[0].display_name | Center for Drug Evaluation and Research |
| authorships[13].institutions[1].id | https://openalex.org/I1320320070 |
| authorships[13].institutions[1].ror | https://ror.org/034xvzb47 |
| authorships[13].institutions[1].type | government |
| authorships[13].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1320320070 |
| authorships[13].institutions[1].country_code | US |
| authorships[13].institutions[1].display_name | United States Food and Drug Administration |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Yueqin Zhao |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Center for Drug Evaluation and Research, US Food and Drug Administration , Silver Spring, MD 20903, United States |
| authorships[14].author.id | https://openalex.org/A5067236770 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-5160-0810 |
| authorships[14].author.display_name | Sengwee Toh |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I4210111543 |
| authorships[14].affiliations[0].raw_affiliation_string | Harvard Pilgrim Health Care Institute , Boston, MA 02215, United States |
| authorships[14].institutions[0].id | https://openalex.org/I4210111543 |
| authorships[14].institutions[0].ror | https://ror.org/01zxdeg39 |
| authorships[14].institutions[0].type | healthcare |
| authorships[14].institutions[0].lineage | https://openalex.org/I4210111543 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Harvard Pilgrim Health Care |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Sengwee Toh |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Harvard Pilgrim Health Care Institute , Boston, MA 02215, United States |
| authorships[15].author.id | https://openalex.org/A5051551743 |
| authorships[15].author.orcid | https://orcid.org/0000-0003-1016-9363 |
| authorships[15].author.display_name | Kevin B. Johnson |
| authorships[15].countries | US |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[15].affiliations[0].raw_affiliation_string | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania , Philadelphia, PA 19104, United States |
| authorships[15].institutions[0].id | https://openalex.org/I79576946 |
| authorships[15].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[15].institutions[0].type | education |
| authorships[15].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[15].institutions[0].country_code | US |
| authorships[15].institutions[0].display_name | University of Pennsylvania |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Kevin B Johnson |
| authorships[15].is_corresponding | False |
| authorships[15].raw_affiliation_strings | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania , Philadelphia, PA 19104, United States |
| authorships[16].author.id | https://openalex.org/A5084296885 |
| authorships[16].author.orcid | https://orcid.org/0000-0003-4587-6121 |
| authorships[16].author.display_name | David M. Aronoff |
| authorships[16].countries | US |
| authorships[16].affiliations[0].institution_ids | https://openalex.org/I4394709130, https://openalex.org/I55769427 |
| authorships[16].affiliations[0].raw_affiliation_string | Department of Medicine, Indiana University School of Medicine , Indianapolis, IN 46202, United States |
| authorships[16].institutions[0].id | https://openalex.org/I4394709130 |
| authorships[16].institutions[0].ror | https://ror.org/02ets8c94 |
| authorships[16].institutions[0].type | education |
| authorships[16].institutions[0].lineage | https://openalex.org/I4394709130, https://openalex.org/I592451 |
| authorships[16].institutions[0].country_code | |
| authorships[16].institutions[0].display_name | Indiana University School of Medicine |
| authorships[16].institutions[1].id | https://openalex.org/I55769427 |
| authorships[16].institutions[1].ror | https://ror.org/05gxnyn08 |
| authorships[16].institutions[1].type | education |
| authorships[16].institutions[1].lineage | https://openalex.org/I55769427, https://openalex.org/I592451 |
| authorships[16].institutions[1].country_code | US |
| authorships[16].institutions[1].display_name | Indiana University – Purdue University Indianapolis |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | David M Aronoff |
| authorships[16].is_corresponding | False |
| authorships[16].raw_affiliation_strings | Department of Medicine, Indiana University School of Medicine , Indianapolis, IN 46202, United States |
| authorships[17].author.id | https://openalex.org/A5041212198 |
| authorships[17].author.orcid | https://orcid.org/0000-0002-8471-0928 |
| authorships[17].author.display_name | David Carrell |
| authorships[17].countries | US |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I150117356 |
| authorships[17].affiliations[0].raw_affiliation_string | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| authorships[17].institutions[0].id | https://openalex.org/I150117356 |
| authorships[17].institutions[0].ror | https://ror.org/0027frf26 |
| authorships[17].institutions[0].type | healthcare |
| authorships[17].institutions[0].lineage | https://openalex.org/I150117356 |
| authorships[17].institutions[0].country_code | US |
| authorships[17].institutions[0].display_name | Kaiser Permanente Washington Health Research Institute |
| authorships[17].author_position | last |
| authorships[17].raw_author_name | David S Carrell |
| authorships[17].is_corresponding | False |
| authorships[17].raw_affiliation_strings | Kaiser Permanente Washington Health Research Institute , Seattle, WA 98101, United States |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10873852/pdf/ocad241.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data-driven automated classification algorithms for acute health conditions: applying PheNorm to COVID-19 disease |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4205698903, https://openalex.org/W4400613637, https://openalex.org/W4294968941, https://openalex.org/W4283819461, https://openalex.org/W2750075801, https://openalex.org/W3164948662, https://openalex.org/W4400413234, https://openalex.org/W3153597579, https://openalex.org/W4394398790, https://openalex.org/W4399455186 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10873852 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10873852/pdf/ocad241.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Am Med Inform Assoc |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10873852 |
| primary_location.id | doi:10.1093/jamia/ocad241 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S129839026 |
| primary_location.source.issn | 1067-5027, 1527-974X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1067-5027 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the American Medical Informatics Association |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the American Medical Informatics Association |
| primary_location.landing_page_url | https://doi.org/10.1093/jamia/ocad241 |
| publication_date | 2023-12-18 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3016229786, https://openalex.org/W3006913750, https://openalex.org/W4280596853, https://openalex.org/W2902452806, https://openalex.org/W2209559096, https://openalex.org/W2131668595, https://openalex.org/W2965414772, https://openalex.org/W3088156227, https://openalex.org/W3129774053, https://openalex.org/W2765693998, https://openalex.org/W2356882517, https://openalex.org/W2961010067, https://openalex.org/W2076859422, https://openalex.org/W3208046866, https://openalex.org/W2520392019, https://openalex.org/W2105637130, https://openalex.org/W4200121889, https://openalex.org/W2283222487, https://openalex.org/W4292807770, https://openalex.org/W4389903773 |
| referenced_works_count | 20 |
| abstract_inverted_index.2 | 98 |
| abstract_inverted_index.a | 66 |
| abstract_inverted_index.We | 88, 156 |
| abstract_inverted_index.an | 217 |
| abstract_inverted_index.at | 128, 148, 183, 199, 208, 234 |
| abstract_inverted_index.be | 232 |
| abstract_inverted_index.is | 35, 65 |
| abstract_inverted_index.it | 230 |
| abstract_inverted_index.of | 57, 93, 113, 138, 150, 163, 225 |
| abstract_inverted_index.on | 76, 111 |
| abstract_inverted_index.to | 13, 45, 49, 70, 91, 107, 231, 243 |
| abstract_inverted_index.we | 39 |
| abstract_inverted_index.F1. | 155 |
| abstract_inverted_index.One | 17 |
| abstract_inverted_index.The | 223 |
| abstract_inverted_index.all | 161 |
| abstract_inverted_index.and | 9, 41, 62, 82, 100, 118, 134, 142, 145, 169, 192 |
| abstract_inverted_index.but | 29 |
| abstract_inverted_index.can | 5 |
| abstract_inverted_index.for | 24, 32, 54, 160 |
| abstract_inverted_index.has | 21 |
| abstract_inverted_index.its | 30, 51 |
| abstract_inverted_index.one | 200 |
| abstract_inverted_index.the | 109, 209, 226 |
| abstract_inverted_index.(low | 83 |
| abstract_inverted_index.AUC, | 132 |
| abstract_inverted_index.also | 202 |
| abstract_inverted_index.both | 184 |
| abstract_inverted_index.data | 106 |
| abstract_inverted_index.each | 129 |
| abstract_inverted_index.from | 97 |
| abstract_inverted_index.risk | 152 |
| abstract_inverted_index.site | 201 |
| abstract_inverted_index.such | 18 |
| abstract_inverted_index.that | 153 |
| abstract_inverted_index.time | 8 |
| abstract_inverted_index.used | 101 |
| abstract_inverted_index.well | 23, 182, 204 |
| abstract_inverted_index.when | 205 |
| abstract_inverted_index.with | 188, 238 |
| abstract_inverted_index.0.851 | 141 |
| abstract_inverted_index.acute | 33, 58, 218 |
| abstract_inverted_index.based | 75 |
| abstract_inverted_index.chart | 104 |
| abstract_inverted_index.cost) | 84 |
| abstract_inverted_index.local | 124 |
| abstract_inverted_index.other | 210 |
| abstract_inverted_index.rapid | 55 |
| abstract_inverted_index.site. | 211 |
| abstract_inverted_index.sites | 237 |
| abstract_inverted_index.study | 236 |
| abstract_inverted_index.using | 179 |
| abstract_inverted_index.value | 137 |
| abstract_inverted_index.0.804, | 143 |
| abstract_inverted_index.0.853, | 139 |
| abstract_inverted_index.0.879, | 140 |
| abstract_inverted_index.0.885, | 146 |
| abstract_inverted_index.0.976, | 144 |
| abstract_inverted_index.Models | 127, 196 |
| abstract_inverted_index.allows | 229 |
| abstract_inverted_index.health | 27, 59, 219 |
| abstract_inverted_index.impact | 110 |
| abstract_inverted_index.labels | 191 |
| abstract_inverted_index.manual | 103 |
| abstract_inverted_index.models | 122, 170, 214 |
| abstract_inverted_index.reduce | 6 |
| abstract_inverted_index.report | 157 |
| abstract_inverted_index.review | 105 |
| abstract_inverted_index.silver | 164 |
| abstract_inverted_index.varied | 187 |
| abstract_inverted_index.versus | 173 |
| abstract_inverted_index.worked | 203 |
| abstract_inverted_index.Herein, | 38 |
| abstract_inverted_index.PheNorm | 43, 64, 90, 180, 213, 227 |
| abstract_inverted_index.Results | 126 |
| abstract_inverted_index.applied | 44, 89, 233 |
| abstract_inverted_index.chronic | 26 |
| abstract_inverted_index.cohorts | 92 |
| abstract_inverted_index.disease | 48 |
| abstract_inverted_index.feature | 115, 166, 193 |
| abstract_inverted_index.labels, | 165 |
| abstract_inverted_index.labels. | 87 |
| abstract_inverted_index.largely | 36 |
| abstract_inverted_index.locally | 198 |
| abstract_inverted_index.machine | 80 |
| abstract_inverted_index.methods | 63 |
| abstract_inverted_index.metrics | 159 |
| abstract_inverted_index.natural | 77 |
| abstract_inverted_index.options | 117 |
| abstract_inverted_index.reduced | 240 |
| abstract_inverted_index.trained | 121, 171 |
| abstract_inverted_index.without | 123 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.COVID-19 | 47, 95 |
| abstract_inverted_index.PheNorm, | 20 |
| abstract_inverted_index.achieved | 131 |
| abstract_inverted_index.approach | 69, 228 |
| abstract_inverted_index.compared | 12, 242 |
| abstract_inverted_index.creating | 71 |
| abstract_inverted_index.evaluate | 42 |
| abstract_inverted_index.language | 78 |
| abstract_inverted_index.manually | 14 |
| abstract_inverted_index.maximize | 154 |
| abstract_inverted_index.multiple | 235 |
| abstract_inverted_index.operator | 10 |
| abstract_inverted_index.options, | 168 |
| abstract_inverted_index.options. | 195 |
| abstract_inverted_index.overhead | 241 |
| abstract_inverted_index.patients | 96 |
| abstract_inverted_index.positive | 135 |
| abstract_inverted_index.training | 86 |
| abstract_inverted_index.unknown. | 37 |
| abstract_inverted_index.Automated | 2 |
| abstract_inverted_index.COVID-19. | 222 |
| abstract_inverted_index.Materials | 61 |
| abstract_inverted_index.approach, | 19 |
| abstract_inverted_index.automated | 68 |
| abstract_inverted_index.developed | 15, 178, 197 |
| abstract_inverted_index.different | 189 |
| abstract_inverted_index.implement | 40 |
| abstract_inverted_index.learning, | 81 |
| abstract_inverted_index.performed | 22, 181 |
| abstract_inverted_index.phenotype | 73 |
| abstract_inverted_index.potential | 52, 94 |
| abstract_inverted_index.quantiles | 149 |
| abstract_inverted_index.Conclusion | 212 |
| abstract_inverted_index.Discussion | 175 |
| abstract_inverted_index.Objectives | 1 |
| abstract_inverted_index.algorithms | 4, 74, 177 |
| abstract_inverted_index.computable | 72 |
| abstract_inverted_index.condition, | 220 |
| abstract_inverted_index.conditions | 34 |
| abstract_inverted_index.dependence | 11 |
| abstract_inverted_index.externally | 120, 207 |
| abstract_inverted_index.identified | 216 |
| abstract_inverted_index.internally | 172 |
| abstract_inverted_index.predictive | 136 |
| abstract_inverted_index.simplicity | 224 |
| abstract_inverted_index.Performance | 186 |
| abstract_inverted_index.Phenotyping | 176 |
| abstract_inverted_index.algorithms. | 16 |
| abstract_inverted_index.alternative | 114 |
| abstract_inverted_index.approaches. | 245 |
| abstract_inverted_index.conditions, | 28 |
| abstract_inverted_index.conditions. | 60 |
| abstract_inverted_index.development | 7 |
| abstract_inverted_index.engineering | 116, 167, 194 |
| abstract_inverted_index.externally. | 174 |
| abstract_inverted_index.feasibility | 53 |
| abstract_inverted_index.identifying | 25 |
| abstract_inverted_index.implemented | 206 |
| abstract_inverted_index.institution | 130 |
| abstract_inverted_index.investigate | 50, 108 |
| abstract_inverted_index.performance | 31, 112, 158 |
| abstract_inverted_index.phenotyping | 3, 56 |
| abstract_inverted_index.processing, | 79 |
| abstract_inverted_index.retraining. | 125 |
| abstract_inverted_index.symptomatic | 46, 221 |
| abstract_inverted_index.traditional | 244 |
| abstract_inverted_index.combinations | 162 |
| abstract_inverted_index.implementing | 119 |
| abstract_inverted_index.institutions | 99 |
| abstract_inverted_index.sensitivity, | 133 |
| abstract_inverted_index.successfully | 215 |
| abstract_inverted_index.gold-standard | 102 |
| abstract_inverted_index.institutions. | 185 |
| abstract_inverted_index.respectively, | 147 |
| abstract_inverted_index.substantially | 239 |
| abstract_inverted_index.general-purpose | 67 |
| abstract_inverted_index.model-predicted | 151 |
| abstract_inverted_index.silver-standard | 85, 190 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5102928402 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 18 |
| corresponding_institution_ids | https://openalex.org/I901861585 |
| citation_normalized_percentile.value | 0.85930736 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |