Data-Driven Control with Learned Dynamics Article Swipe
This research focuses on studying data-driven control with dynamics that are actively learned from machine learning algorithms. With system dynamics being identified using neural networks either explicitly or implicitly, we can apply control following either a model-based approach or a model-free approach. In this thesis, the two different methods are explained in detail and finally compared to shed light on the emerging data-driven control research field.\nIn the first part of the thesis, we first introduce state-of-art Reinforcement Learning (RL) algorithm representing data-driven control using a model-free learning approach. We discuss the advantages and shortcomings of the current RL algorithms and motivate our study to search for a model-based control which is physics-based and also provides better model interpretability. We then propose a novel data-driven, model-based approach for the optimal control of the dynamical system. The proposed approach relies on the Deep Neural Network (DNN) based learning of Koopman operator and therefore is named as Deep Learning of Koopman Representation for Control (DKRC). In particular, DNN is employed for the data-driven identification of basis function used in the linear lifting of nonlinear control system dynamics. One a linear representation of system dynamics is learned, we can implement classic control algorithms such as iterative Linear Quadratic Regulator (iLQR) and Model Predictive Control (MPC) for optimal control design. The controller synthesis is purely data-driven and does not rely on prior domain knowledge. The OpenAI Gym environment is used for simulations of various control problems. The method is applied to three classic dynamical systems on OpenAI Gym environment to demonstrate the capability.\nIn the second part, we compare the proposed method with a state-of-art model-free control method based on an actor-critic architecture – Deep Deterministic Policy Gradient (DDPG), which has been proved to be effective in various dynamical systems. Two examples are provided for comparison, i.e., classic Inverted Pendulum and Lunar Lander Continuous Control. We compare these two methods in terms of control strategies and the effectiveness under various initialization conditions from the results of the experiments. We also examine the learned dynamic model from DKRC with the analytical model derived from the Euler-Lagrange Linearization method, demonstrating the accuracy in the learned model for unknown dynamics from a data-driven sample-efficient approach.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://tigerprints.clemson.edu/all_theses/3398
- https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4405&context=all_theses
- OA Status
- green
- References
- 5
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3082858770
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3082858770Canonical identifier for this work in OpenAlex
- Title
-
Data-Driven Control with Learned DynamicsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Wenjian HaoList of authors in order
- Landing page
-
https://tigerprints.clemson.edu/all_theses/3398Publisher landing page
- PDF URL
-
https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4405&context=all_thesesDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4405&context=all_thesesDirect OA link when available
- Concepts
-
Control (management), Computer science, Dynamics (music), Artificial intelligence, Psychology, PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3082858770 |
|---|---|
| doi | |
| ids.mag | 3082858770 |
| ids.openalex | https://openalex.org/W3082858770 |
| fwci | 0.0 |
| type | article |
| title | Data-Driven Control with Learned Dynamics |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10791 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Advanced Control Systems Optimization |
| topics[1].id | https://openalex.org/T11236 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Control Systems and Identification |
| topics[2].id | https://openalex.org/T10876 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9952999949455261 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2775924081 |
| concepts[0].level | 2 |
| concepts[0].score | 0.47342684864997864 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[0].display_name | Control (management) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.46939438581466675 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C145912823 |
| concepts[2].level | 2 |
| concepts[2].score | 0.45979946851730347 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q113558 |
| concepts[2].display_name | Dynamics (music) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.2901681661605835 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.1309194266796112 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C19417346 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[5].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/control |
| keywords[0].score | 0.47342684864997864 |
| keywords[0].display_name | Control (management) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.46939438581466675 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/dynamics |
| keywords[2].score | 0.45979946851730347 |
| keywords[2].display_name | Dynamics (music) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.2901681661605835 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.1309194266796112 |
| keywords[4].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:tigerprints.clemson.edu:all_theses-4405 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196397 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | TigerPrints (Clemson University) |
| locations[0].source.host_organization | https://openalex.org/I8078737 |
| locations[0].source.host_organization_name | Clemson University |
| locations[0].source.host_organization_lineage | https://openalex.org/I8078737 |
| locations[0].license | |
| locations[0].pdf_url | https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4405&context=all_theses |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | All Theses |
| locations[0].landing_page_url | https://tigerprints.clemson.edu/all_theses/3398 |
| locations[1].id | pmh:oai:open.clemson.edu:all_theses-4405 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | All Theses |
| locations[1].landing_page_url | https://open.clemson.edu/all_theses/3398 |
| locations[2].id | mag:3082858770 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://tigerprints.clemson.edu/all_theses/3398/ |
| authorships[0].author.id | https://openalex.org/A5030939982 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wenjian Hao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenjian Hao |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4405&context=all_theses |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data-Driven Control with Learned Dynamics |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10791 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Advanced Control Systems Optimization |
| related_works | https://openalex.org/W3118406814, https://openalex.org/W1882507001, https://openalex.org/W2117629901, https://openalex.org/W2995924140, https://openalex.org/W2101761545, https://openalex.org/W2031269899, https://openalex.org/W2515948165, https://openalex.org/W1511570998, https://openalex.org/W2978070926, https://openalex.org/W2149645818, https://openalex.org/W2386329118, https://openalex.org/W2981903658, https://openalex.org/W1902261929, https://openalex.org/W3183075651, https://openalex.org/W2677207951, https://openalex.org/W2347137629, https://openalex.org/W3127561923, https://openalex.org/W3045043072, https://openalex.org/W2978964352, https://openalex.org/W1627733477 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:tigerprints.clemson.edu:all_theses-4405 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196397 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | TigerPrints (Clemson University) |
| best_oa_location.source.host_organization | https://openalex.org/I8078737 |
| best_oa_location.source.host_organization_name | Clemson University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I8078737 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4405&context=all_theses |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | All Theses |
| best_oa_location.landing_page_url | https://tigerprints.clemson.edu/all_theses/3398 |
| primary_location.id | pmh:oai:tigerprints.clemson.edu:all_theses-4405 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196397 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | TigerPrints (Clemson University) |
| primary_location.source.host_organization | https://openalex.org/I8078737 |
| primary_location.source.host_organization_name | Clemson University |
| primary_location.source.host_organization_lineage | https://openalex.org/I8078737 |
| primary_location.license | |
| primary_location.pdf_url | https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=4405&context=all_theses |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | All Theses |
| primary_location.landing_page_url | https://tigerprints.clemson.edu/all_theses/3398 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1723433682, https://openalex.org/W2096018174, https://openalex.org/W2949117887, https://openalex.org/W2121863487, https://openalex.org/W2959792658 |
| referenced_works_count | 5 |
| abstract_inverted_index.a | 35, 39, 84, 106, 121, 185, 267, 362 |
| abstract_inverted_index.In | 42, 162 |
| abstract_inverted_index.RL | 97 |
| abstract_inverted_index.We | 88, 118, 309, 332 |
| abstract_inverted_index.an | 274 |
| abstract_inverted_index.as | 153, 200 |
| abstract_inverted_index.be | 288 |
| abstract_inverted_index.in | 51, 175, 290, 314, 354 |
| abstract_inverted_index.is | 110, 151, 165, 191, 218, 233, 243 |
| abstract_inverted_index.of | 69, 94, 130, 146, 156, 171, 179, 188, 237, 316, 329 |
| abstract_inverted_index.on | 3, 59, 138, 225, 250, 273 |
| abstract_inverted_index.or | 27, 38 |
| abstract_inverted_index.to | 56, 103, 245, 254, 287 |
| abstract_inverted_index.we | 29, 72, 193, 261 |
| abstract_inverted_index.DNN | 164 |
| abstract_inverted_index.Gym | 231, 252 |
| abstract_inverted_index.One | 184 |
| abstract_inverted_index.The | 134, 215, 229, 241 |
| abstract_inverted_index.Two | 294 |
| abstract_inverted_index.and | 53, 92, 99, 112, 149, 206, 221, 304, 319 |
| abstract_inverted_index.are | 10, 49, 296 |
| abstract_inverted_index.can | 30, 194 |
| abstract_inverted_index.for | 105, 126, 159, 167, 211, 235, 298, 358 |
| abstract_inverted_index.has | 284 |
| abstract_inverted_index.not | 223 |
| abstract_inverted_index.our | 101 |
| abstract_inverted_index.the | 45, 60, 66, 70, 90, 95, 127, 131, 139, 168, 176, 256, 258, 263, 320, 327, 330, 335, 342, 347, 352, 355 |
| abstract_inverted_index.two | 46, 312 |
| abstract_inverted_index.– | 277 |
| abstract_inverted_index.(RL) | 78 |
| abstract_inverted_index.DKRC | 340 |
| abstract_inverted_index.Deep | 140, 154, 278 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.With | 17 |
| abstract_inverted_index.also | 113, 333 |
| abstract_inverted_index.been | 285 |
| abstract_inverted_index.does | 222 |
| abstract_inverted_index.from | 13, 326, 339, 346, 361 |
| abstract_inverted_index.part | 68 |
| abstract_inverted_index.rely | 224 |
| abstract_inverted_index.shed | 57 |
| abstract_inverted_index.such | 199 |
| abstract_inverted_index.that | 9 |
| abstract_inverted_index.then | 119 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.used | 174, 234 |
| abstract_inverted_index.with | 7, 266, 341 |
| abstract_inverted_index.(DNN) | 143 |
| abstract_inverted_index.(MPC) | 210 |
| abstract_inverted_index.Lunar | 305 |
| abstract_inverted_index.Model | 207 |
| abstract_inverted_index.apply | 31 |
| abstract_inverted_index.based | 144, 272 |
| abstract_inverted_index.basis | 172 |
| abstract_inverted_index.being | 20 |
| abstract_inverted_index.first | 67, 73 |
| abstract_inverted_index.i.e., | 300 |
| abstract_inverted_index.light | 58 |
| abstract_inverted_index.model | 116, 338, 344, 357 |
| abstract_inverted_index.named | 152 |
| abstract_inverted_index.novel | 122 |
| abstract_inverted_index.part, | 260 |
| abstract_inverted_index.prior | 226 |
| abstract_inverted_index.study | 102 |
| abstract_inverted_index.terms | 315 |
| abstract_inverted_index.these | 311 |
| abstract_inverted_index.three | 246 |
| abstract_inverted_index.under | 322 |
| abstract_inverted_index.using | 22, 83 |
| abstract_inverted_index.which | 109, 283 |
| abstract_inverted_index.(iLQR) | 205 |
| abstract_inverted_index.Lander | 306 |
| abstract_inverted_index.Linear | 202 |
| abstract_inverted_index.Neural | 141 |
| abstract_inverted_index.OpenAI | 230, 251 |
| abstract_inverted_index.Policy | 280 |
| abstract_inverted_index.better | 115 |
| abstract_inverted_index.detail | 52 |
| abstract_inverted_index.domain | 227 |
| abstract_inverted_index.either | 25, 34 |
| abstract_inverted_index.linear | 177, 186 |
| abstract_inverted_index.method | 242, 265, 271 |
| abstract_inverted_index.neural | 23 |
| abstract_inverted_index.proved | 286 |
| abstract_inverted_index.purely | 219 |
| abstract_inverted_index.relies | 137 |
| abstract_inverted_index.search | 104 |
| abstract_inverted_index.second | 259 |
| abstract_inverted_index.system | 18, 182, 189 |
| abstract_inverted_index.(DDPG), | 282 |
| abstract_inverted_index.(DKRC). | 161 |
| abstract_inverted_index.Control | 160, 209 |
| abstract_inverted_index.Koopman | 147, 157 |
| abstract_inverted_index.Network | 142 |
| abstract_inverted_index.applied | 244 |
| abstract_inverted_index.classic | 196, 247, 301 |
| abstract_inverted_index.compare | 262, 310 |
| abstract_inverted_index.control | 6, 32, 63, 82, 108, 129, 181, 197, 213, 239, 270, 317 |
| abstract_inverted_index.current | 96 |
| abstract_inverted_index.derived | 345 |
| abstract_inverted_index.design. | 214 |
| abstract_inverted_index.discuss | 89 |
| abstract_inverted_index.dynamic | 337 |
| abstract_inverted_index.examine | 334 |
| abstract_inverted_index.finally | 54 |
| abstract_inverted_index.focuses | 2 |
| abstract_inverted_index.learned | 12, 336, 356 |
| abstract_inverted_index.lifting | 178 |
| abstract_inverted_index.machine | 14 |
| abstract_inverted_index.method, | 350 |
| abstract_inverted_index.methods | 48, 313 |
| abstract_inverted_index.optimal | 128, 212 |
| abstract_inverted_index.propose | 120 |
| abstract_inverted_index.results | 328 |
| abstract_inverted_index.system. | 133 |
| abstract_inverted_index.systems | 249 |
| abstract_inverted_index.thesis, | 44, 71 |
| abstract_inverted_index.unknown | 359 |
| abstract_inverted_index.various | 238, 291, 323 |
| abstract_inverted_index.Control. | 308 |
| abstract_inverted_index.Gradient | 281 |
| abstract_inverted_index.Inverted | 302 |
| abstract_inverted_index.Learning | 77, 155 |
| abstract_inverted_index.Pendulum | 303 |
| abstract_inverted_index.accuracy | 353 |
| abstract_inverted_index.actively | 11 |
| abstract_inverted_index.approach | 37, 125, 136 |
| abstract_inverted_index.compared | 55 |
| abstract_inverted_index.dynamics | 8, 19, 190, 360 |
| abstract_inverted_index.emerging | 61 |
| abstract_inverted_index.employed | 166 |
| abstract_inverted_index.examples | 295 |
| abstract_inverted_index.function | 173 |
| abstract_inverted_index.learned, | 192 |
| abstract_inverted_index.learning | 15, 86, 145 |
| abstract_inverted_index.motivate | 100 |
| abstract_inverted_index.networks | 24 |
| abstract_inverted_index.operator | 148 |
| abstract_inverted_index.proposed | 135, 264 |
| abstract_inverted_index.provided | 297 |
| abstract_inverted_index.provides | 114 |
| abstract_inverted_index.research | 1, 64 |
| abstract_inverted_index.studying | 4 |
| abstract_inverted_index.systems. | 293 |
| abstract_inverted_index.Quadratic | 203 |
| abstract_inverted_index.Regulator | 204 |
| abstract_inverted_index.algorithm | 79 |
| abstract_inverted_index.approach. | 41, 87, 365 |
| abstract_inverted_index.different | 47 |
| abstract_inverted_index.dynamical | 132, 248, 292 |
| abstract_inverted_index.dynamics. | 183 |
| abstract_inverted_index.effective | 289 |
| abstract_inverted_index.explained | 50 |
| abstract_inverted_index.following | 33 |
| abstract_inverted_index.implement | 195 |
| abstract_inverted_index.introduce | 74 |
| abstract_inverted_index.iterative | 201 |
| abstract_inverted_index.nonlinear | 180 |
| abstract_inverted_index.problems. | 240 |
| abstract_inverted_index.synthesis | 217 |
| abstract_inverted_index.therefore | 150 |
| abstract_inverted_index.Continuous | 307 |
| abstract_inverted_index.Predictive | 208 |
| abstract_inverted_index.advantages | 91 |
| abstract_inverted_index.algorithms | 98, 198 |
| abstract_inverted_index.analytical | 343 |
| abstract_inverted_index.conditions | 325 |
| abstract_inverted_index.controller | 216 |
| abstract_inverted_index.explicitly | 26 |
| abstract_inverted_index.field.\nIn | 65 |
| abstract_inverted_index.identified | 21 |
| abstract_inverted_index.knowledge. | 228 |
| abstract_inverted_index.model-free | 40, 85, 269 |
| abstract_inverted_index.strategies | 318 |
| abstract_inverted_index.algorithms. | 16 |
| abstract_inverted_index.comparison, | 299 |
| abstract_inverted_index.data-driven | 5, 62, 81, 169, 220, 363 |
| abstract_inverted_index.demonstrate | 255 |
| abstract_inverted_index.environment | 232, 253 |
| abstract_inverted_index.implicitly, | 28 |
| abstract_inverted_index.model-based | 36, 107, 124 |
| abstract_inverted_index.particular, | 163 |
| abstract_inverted_index.simulations | 236 |
| abstract_inverted_index.actor-critic | 275 |
| abstract_inverted_index.architecture | 276 |
| abstract_inverted_index.data-driven, | 123 |
| abstract_inverted_index.experiments. | 331 |
| abstract_inverted_index.representing | 80 |
| abstract_inverted_index.shortcomings | 93 |
| abstract_inverted_index.state-of-art | 75, 268 |
| abstract_inverted_index.Deterministic | 279 |
| abstract_inverted_index.Linearization | 349 |
| abstract_inverted_index.Reinforcement | 76 |
| abstract_inverted_index.demonstrating | 351 |
| abstract_inverted_index.effectiveness | 321 |
| abstract_inverted_index.physics-based | 111 |
| abstract_inverted_index.Euler-Lagrange | 348 |
| abstract_inverted_index.Representation | 158 |
| abstract_inverted_index.identification | 170 |
| abstract_inverted_index.initialization | 324 |
| abstract_inverted_index.representation | 187 |
| abstract_inverted_index.capability.\nIn | 257 |
| abstract_inverted_index.sample-efficient | 364 |
| abstract_inverted_index.interpretability. | 117 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5030939982 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.10346246 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |