Data-Driven Disease Progression Modeling Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/978-3-031-07912-2_17
This chapter provides a comprehensive overview to data driven disease progression modeling techniques. It adopts a broad approach to disease progression, focusing on all computational methods able to model any temporal aspects of disease progression. Consequently, we have focused on three classes of analysis: staging and trajectory estimation analysis to better understand the course of a disease, predictive classification analysis for important disease related event prediction, and time to event analysis with survival models to estimate when clinically significant events are expected to occur during the progression of a disease. We describe the state of the art in each of these classes, together with discussions on challenges and opportunities for additional research.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1007/978-3-031-07912-2_17
- OA Status
- hybrid
- Cited By
- 1
- References
- 80
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313055772
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313055772Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/978-3-031-07912-2_17Digital Object Identifier
- Title
-
Data-Driven Disease Progression ModelingWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Kenney Ng, Mohamed Ghalwash, Prithwish Chakraborty, Daby Sow, Akira Koseki, Hiroki Yanagisawa, Michiharu KudoList of authors in order
- Landing page
-
https://doi.org/10.1007/978-3-031-07912-2_17Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1007/978-3-031-07912-2_17Direct OA link when available
- Concepts
-
Disease, Computer science, Medicine, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
80Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313055772 |
|---|---|
| doi | https://doi.org/10.1007/978-3-031-07912-2_17 |
| ids.doi | https://doi.org/10.1007/978-3-031-07912-2_17 |
| ids.openalex | https://openalex.org/W4313055772 |
| fwci | 0.36439807 |
| type | book-chapter |
| title | Data-Driven Disease Progression Modeling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 276 |
| biblio.first_page | 247 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T10804 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9825000166893005 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Health Systems, Economic Evaluations, Quality of Life |
| topics[2].id | https://openalex.org/T10821 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9639000296592712 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | Cardiovascular Function and Risk Factors |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779134260 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5706355571746826 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[0].display_name | Disease |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.49987220764160156 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.23784050345420837 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C126322002 |
| concepts[3].level | 1 |
| concepts[3].score | 0.09809324145317078 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[3].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/disease |
| keywords[0].score | 0.5706355571746826 |
| keywords[0].display_name | Disease |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.49987220764160156 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.23784050345420837 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/internal-medicine |
| keywords[3].score | 0.09809324145317078 |
| keywords[3].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1007/978-3-031-07912-2_17 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210173684 |
| locations[0].source.issn | 2197-3733, 2197-3741 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2197-3733 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Health informatics |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Health Informatics |
| locations[0].landing_page_url | https://doi.org/10.1007/978-3-031-07912-2_17 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5070430680 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0792-070X |
| authorships[0].author.display_name | Kenney Ng |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[0].affiliations[0].raw_affiliation_string | IBM Research, International Business Machines Corporation, Cambridge, MA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[0].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | IBM (United States) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kenney Ng |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | IBM Research, International Business Machines Corporation, Cambridge, MA, USA |
| authorships[1].author.id | https://openalex.org/A5057905718 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3169-4346 |
| authorships[1].author.display_name | Mohamed Ghalwash |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[1].affiliations[0].raw_affiliation_string | IBM Research, International Business Machines Corporation, Yorktown Heights, NY, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[1].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | IBM (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mohamed Ghalwash |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | IBM Research, International Business Machines Corporation, Yorktown Heights, NY, USA |
| authorships[2].author.id | https://openalex.org/A5103154375 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1407-7677 |
| authorships[2].author.display_name | Prithwish Chakraborty |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[2].affiliations[0].raw_affiliation_string | IBM Research, International Business Machines Corporation, Yorktown Heights, NY, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[2].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | IBM (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Prithwish Chakraborty |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | IBM Research, International Business Machines Corporation, Yorktown Heights, NY, USA |
| authorships[3].author.id | https://openalex.org/A5042350438 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2227-5243 |
| authorships[3].author.display_name | Daby Sow |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1341412227 |
| authorships[3].affiliations[0].raw_affiliation_string | IBM Research, International Business Machines Corporation, Yorktown Heights, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1341412227 |
| authorships[3].institutions[0].ror | https://ror.org/05hh8d621 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1341412227 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | IBM (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daby M. Sow |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | IBM Research, International Business Machines Corporation, Yorktown Heights, NY, USA |
| authorships[4].author.id | https://openalex.org/A5028139321 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Akira Koseki |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210145865 |
| authorships[4].affiliations[0].raw_affiliation_string | IBM Research, International Business Machines Corporation, Tokyo, Japan |
| authorships[4].institutions[0].id | https://openalex.org/I4210145865 |
| authorships[4].institutions[0].ror | https://ror.org/04915qk43 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210145865 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | IBM Research - Tokyo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Akira Koseki |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | IBM Research, International Business Machines Corporation, Tokyo, Japan |
| authorships[5].author.id | https://openalex.org/A5101426289 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3421-5240 |
| authorships[5].author.display_name | Hiroki Yanagisawa |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210145865 |
| authorships[5].affiliations[0].raw_affiliation_string | IBM Research, International Business Machines Corporation, Tokyo, Japan |
| authorships[5].institutions[0].id | https://openalex.org/I4210145865 |
| authorships[5].institutions[0].ror | https://ror.org/04915qk43 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210145865 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | IBM Research - Tokyo |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hiroki Yanagisawa |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | IBM Research, International Business Machines Corporation, Tokyo, Japan |
| authorships[6].author.id | https://openalex.org/A5103203636 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1575-6305 |
| authorships[6].author.display_name | Michiharu Kudo |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210145865 |
| authorships[6].affiliations[0].raw_affiliation_string | IBM Research, International Business Machines Corporation, Tokyo, Japan |
| authorships[6].institutions[0].id | https://openalex.org/I4210145865 |
| authorships[6].institutions[0].ror | https://ror.org/04915qk43 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I1341412227, https://openalex.org/I4210114115, https://openalex.org/I4210145865 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | IBM Research - Tokyo |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Michiharu Kudo |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | IBM Research, International Business Machines Corporation, Tokyo, Japan |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1007/978-3-031-07912-2_17 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data-Driven Disease Progression Modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W2350741829, https://openalex.org/W2530322880, https://openalex.org/W1596801655 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/978-3-031-07912-2_17 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210173684 |
| best_oa_location.source.issn | 2197-3733, 2197-3741 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2197-3733 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Health informatics |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Health Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1007/978-3-031-07912-2_17 |
| primary_location.id | doi:10.1007/978-3-031-07912-2_17 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210173684 |
| primary_location.source.issn | 2197-3733, 2197-3741 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2197-3733 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Health informatics |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Health Informatics |
| primary_location.landing_page_url | https://doi.org/10.1007/978-3-031-07912-2_17 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2507763988, https://openalex.org/W2161424516, https://openalex.org/W2143548516, https://openalex.org/W2055266238, https://openalex.org/W2085803300, https://openalex.org/W2076764901, https://openalex.org/W2053530354, https://openalex.org/W277705329, https://openalex.org/W2106585690, https://openalex.org/W2910129831, https://openalex.org/W2083879405, https://openalex.org/W3008074475, https://openalex.org/W3015593438, https://openalex.org/W1999802986, https://openalex.org/W2186184898, https://openalex.org/W2168090621, https://openalex.org/W2059980448, https://openalex.org/W2971113110, https://openalex.org/W2089085990, https://openalex.org/W1953027527, https://openalex.org/W2108381339, https://openalex.org/W1999702935, https://openalex.org/W2606710341, https://openalex.org/W2112165124, https://openalex.org/W2794262303, https://openalex.org/W2020279151, https://openalex.org/W2396881363, https://openalex.org/W2095654324, https://openalex.org/W2105594594, https://openalex.org/W7075744841, https://openalex.org/W2049633694, https://openalex.org/W2765780881, https://openalex.org/W2094100061, https://openalex.org/W1998396170, https://openalex.org/W2031250362, https://openalex.org/W2607113351, https://openalex.org/W2805089815, https://openalex.org/W2922844241, https://openalex.org/W2905472816, https://openalex.org/W2884584140, https://openalex.org/W2923546398, https://openalex.org/W2945976633, https://openalex.org/W2282821441, https://openalex.org/W3041564249, https://openalex.org/W4293241248, https://openalex.org/W3147894994, https://openalex.org/W2481970566, https://openalex.org/W2963232127, https://openalex.org/W3123284220, https://openalex.org/W2074703669, https://openalex.org/W1980179199, https://openalex.org/W2801183969, https://openalex.org/W2753919178, https://openalex.org/W2611463039, https://openalex.org/W3043242675, https://openalex.org/W2548918765, https://openalex.org/W2775288710, https://openalex.org/W2533824555, https://openalex.org/W2000703258, https://openalex.org/W2789172526, https://openalex.org/W2963246719, https://openalex.org/W2890165066, https://openalex.org/W3080893920, https://openalex.org/W2011186625, https://openalex.org/W2052825782, https://openalex.org/W3174526153, https://openalex.org/W2789184069, https://openalex.org/W1928278792, https://openalex.org/W2064675550, https://openalex.org/W3174267359, https://openalex.org/W2358113125, https://openalex.org/W2585311025, https://openalex.org/W2808746463, https://openalex.org/W3081725187, https://openalex.org/W2971278153, https://openalex.org/W2103926280, https://openalex.org/W2990138404, https://openalex.org/W4297938578, https://openalex.org/W2809313038, https://openalex.org/W2009435671 |
| referenced_works_count | 80 |
| abstract_inverted_index.a | 3, 15, 55, 88 |
| abstract_inverted_index.It | 13 |
| abstract_inverted_index.We | 90 |
| abstract_inverted_index.in | 97 |
| abstract_inverted_index.of | 32, 42, 54, 87, 94, 99 |
| abstract_inverted_index.on | 22, 39, 105 |
| abstract_inverted_index.to | 6, 18, 27, 49, 68, 74, 82 |
| abstract_inverted_index.we | 36 |
| abstract_inverted_index.all | 23 |
| abstract_inverted_index.and | 45, 66, 107 |
| abstract_inverted_index.any | 29 |
| abstract_inverted_index.are | 80 |
| abstract_inverted_index.art | 96 |
| abstract_inverted_index.for | 60, 109 |
| abstract_inverted_index.the | 52, 85, 92, 95 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.able | 26 |
| abstract_inverted_index.data | 7 |
| abstract_inverted_index.each | 98 |
| abstract_inverted_index.have | 37 |
| abstract_inverted_index.time | 67 |
| abstract_inverted_index.when | 76 |
| abstract_inverted_index.with | 71, 103 |
| abstract_inverted_index.broad | 16 |
| abstract_inverted_index.event | 64, 69 |
| abstract_inverted_index.model | 28 |
| abstract_inverted_index.occur | 83 |
| abstract_inverted_index.state | 93 |
| abstract_inverted_index.these | 100 |
| abstract_inverted_index.three | 40 |
| abstract_inverted_index.adopts | 14 |
| abstract_inverted_index.better | 50 |
| abstract_inverted_index.course | 53 |
| abstract_inverted_index.driven | 8 |
| abstract_inverted_index.during | 84 |
| abstract_inverted_index.events | 79 |
| abstract_inverted_index.models | 73 |
| abstract_inverted_index.aspects | 31 |
| abstract_inverted_index.chapter | 1 |
| abstract_inverted_index.classes | 41 |
| abstract_inverted_index.disease | 9, 19, 33, 62 |
| abstract_inverted_index.focused | 38 |
| abstract_inverted_index.methods | 25 |
| abstract_inverted_index.related | 63 |
| abstract_inverted_index.staging | 44 |
| abstract_inverted_index.analysis | 48, 59, 70 |
| abstract_inverted_index.approach | 17 |
| abstract_inverted_index.classes, | 101 |
| abstract_inverted_index.describe | 91 |
| abstract_inverted_index.disease, | 56 |
| abstract_inverted_index.disease. | 89 |
| abstract_inverted_index.estimate | 75 |
| abstract_inverted_index.expected | 81 |
| abstract_inverted_index.focusing | 21 |
| abstract_inverted_index.modeling | 11 |
| abstract_inverted_index.overview | 5 |
| abstract_inverted_index.provides | 2 |
| abstract_inverted_index.survival | 72 |
| abstract_inverted_index.temporal | 30 |
| abstract_inverted_index.together | 102 |
| abstract_inverted_index.analysis: | 43 |
| abstract_inverted_index.important | 61 |
| abstract_inverted_index.research. | 111 |
| abstract_inverted_index.additional | 110 |
| abstract_inverted_index.challenges | 106 |
| abstract_inverted_index.clinically | 77 |
| abstract_inverted_index.estimation | 47 |
| abstract_inverted_index.predictive | 57 |
| abstract_inverted_index.trajectory | 46 |
| abstract_inverted_index.understand | 51 |
| abstract_inverted_index.discussions | 104 |
| abstract_inverted_index.prediction, | 65 |
| abstract_inverted_index.progression | 10, 86 |
| abstract_inverted_index.significant | 78 |
| abstract_inverted_index.techniques. | 12 |
| abstract_inverted_index.progression, | 20 |
| abstract_inverted_index.progression. | 34 |
| abstract_inverted_index.Consequently, | 35 |
| abstract_inverted_index.comprehensive | 4 |
| abstract_inverted_index.computational | 24 |
| abstract_inverted_index.opportunities | 108 |
| abstract_inverted_index.classification | 58 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5070430680 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I1341412227 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.64425415 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |