Data-Driven EEG Band Discovery with Decision Trees Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22083048
Electroencephalography (EEG) is a brain imaging technique in which electrodes are placed on the scalp. EEG signals are commonly decomposed into frequency bands called delta, theta, alpha, and beta. While these bands have been shown to be useful for characterizing various brain states, their utility as a one-size-fits-all analysis tool remains unclear. The goal of this work is to outline an objective strategy for discovering optimal EEG bands based on signal power spectra. A two-step data-driven methodology is presented for objectively determining the best EEG bands for a given dataset. First, a decision tree is used to estimate the optimal frequency band boundaries for reproducing the signal’s power spectrum for a predetermined number of bands. The optimal number of bands is then determined using an Akaike Information Criterion (AIC)-inspired quality score that balances goodness-of-fit with a small band count. This data-driven approach led to better characterization of the underlying power spectrum by identifying bands that outperformed the more commonly used band boundaries by a factor of two. Additionally, key spectral components were isolated in dedicated frequency bands. The proposed method provides a fully automated and flexible approach to capturing key signal components and possibly discovering new indices of brain activity.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22083048
- https://www.mdpi.com/1424-8220/22/8/3048/pdf?version=1650019953
- OA Status
- gold
- Cited By
- 10
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4224298655
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4224298655Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22083048Digital Object Identifier
- Title
-
Data-Driven EEG Band Discovery with Decision TreesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-15Full publication date if available
- Authors
-
Shawhin Talebi, John Waczak, Bharana Fernando, Arjun Sridhar, David J. LaryList of authors in order
- Landing page
-
https://doi.org/10.3390/s22083048Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/8/3048/pdf?version=1650019953Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/8/3048/pdf?version=1650019953Direct OA link when available
- Concepts
-
Electroencephalography, Akaike information criterion, Spectral density, Computer science, Radio spectrum, Pattern recognition (psychology), Artificial intelligence, SIGNAL (programming language), Frequency band, Decision tree, Alpha (finance), Speech recognition, Mathematics, Machine learning, Statistics, Bandwidth (computing), Psychology, Telecommunications, Construct validity, Psychiatry, Programming language, PsychometricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4224298655 |
|---|---|
| doi | https://doi.org/10.3390/s22083048 |
| ids.doi | https://doi.org/10.3390/s22083048 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35459032 |
| ids.openalex | https://openalex.org/W4224298655 |
| fwci | 1.60520913 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D001921 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Brain |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D003663 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Decision Trees |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D004569 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Electroencephalography |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D012535 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Scalp |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D001921 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Brain |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D003663 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Decision Trees |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D004569 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Electroencephalography |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D012535 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Scalp |
| type | article |
| title | Data-Driven EEG Band Discovery with Decision Trees |
| awards[0].id | https://openalex.org/G4915278024 |
| awards[0].funder_id | https://openalex.org/F4320306107 |
| awards[0].display_name | |
| awards[0].funder_award_id | 83996501 |
| awards[0].funder_display_name | U.S. Environmental Protection Agency |
| biblio.issue | 8 |
| biblio.volume | 22 |
| biblio.last_page | 3048 |
| biblio.first_page | 3048 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9970999956130981 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| funders[0].id | https://openalex.org/F4320306107 |
| funders[0].ror | https://ror.org/03tns0030 |
| funders[0].display_name | U.S. Environmental Protection Agency |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.76396644115448 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C126674687 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7497779130935669 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1662573 |
| concepts[1].display_name | Akaike information criterion |
| concepts[2].id | https://openalex.org/C168110828 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6313350796699524 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1331626 |
| concepts[2].display_name | Spectral density |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6063843965530396 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C92545706 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5901210308074951 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q902174 |
| concepts[4].display_name | Radio spectrum |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5785609483718872 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5717588663101196 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2779843651 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5591339468955994 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[7].display_name | SIGNAL (programming language) |
| concepts[8].id | https://openalex.org/C2778116611 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5300084352493286 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25110567 |
| concepts[8].display_name | Frequency band |
| concepts[9].id | https://openalex.org/C84525736 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5116987228393555 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[9].display_name | Decision tree |
| concepts[10].id | https://openalex.org/C64943373 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4156438112258911 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2651003 |
| concepts[10].display_name | Alpha (finance) |
| concepts[11].id | https://openalex.org/C28490314 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32382890582084656 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[11].display_name | Speech recognition |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.24838796257972717 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.235801100730896 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2133558988571167 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C2776257435 |
| concepts[15].level | 2 |
| concepts[15].score | 0.20863112807273865 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[15].display_name | Bandwidth (computing) |
| concepts[16].id | https://openalex.org/C15744967 |
| concepts[16].level | 0 |
| concepts[16].score | 0.09647408127784729 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[16].display_name | Psychology |
| concepts[17].id | https://openalex.org/C76155785 |
| concepts[17].level | 1 |
| concepts[17].score | 0.09543505311012268 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[17].display_name | Telecommunications |
| concepts[18].id | https://openalex.org/C49453240 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1592163 |
| concepts[18].display_name | Construct validity |
| concepts[19].id | https://openalex.org/C118552586 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[19].display_name | Psychiatry |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C171606756 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q506132 |
| concepts[21].display_name | Psychometrics |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.76396644115448 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/akaike-information-criterion |
| keywords[1].score | 0.7497779130935669 |
| keywords[1].display_name | Akaike information criterion |
| keywords[2].id | https://openalex.org/keywords/spectral-density |
| keywords[2].score | 0.6313350796699524 |
| keywords[2].display_name | Spectral density |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6063843965530396 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/radio-spectrum |
| keywords[4].score | 0.5901210308074951 |
| keywords[4].display_name | Radio spectrum |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5785609483718872 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5717588663101196 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/signal |
| keywords[7].score | 0.5591339468955994 |
| keywords[7].display_name | SIGNAL (programming language) |
| keywords[8].id | https://openalex.org/keywords/frequency-band |
| keywords[8].score | 0.5300084352493286 |
| keywords[8].display_name | Frequency band |
| keywords[9].id | https://openalex.org/keywords/decision-tree |
| keywords[9].score | 0.5116987228393555 |
| keywords[9].display_name | Decision tree |
| keywords[10].id | https://openalex.org/keywords/alpha |
| keywords[10].score | 0.4156438112258911 |
| keywords[10].display_name | Alpha (finance) |
| keywords[11].id | https://openalex.org/keywords/speech-recognition |
| keywords[11].score | 0.32382890582084656 |
| keywords[11].display_name | Speech recognition |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.24838796257972717 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.235801100730896 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.2133558988571167 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/bandwidth |
| keywords[15].score | 0.20863112807273865 |
| keywords[15].display_name | Bandwidth (computing) |
| keywords[16].id | https://openalex.org/keywords/psychology |
| keywords[16].score | 0.09647408127784729 |
| keywords[16].display_name | Psychology |
| keywords[17].id | https://openalex.org/keywords/telecommunications |
| keywords[17].score | 0.09543505311012268 |
| keywords[17].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/s22083048 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/8/3048/pdf?version=1650019953 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22083048 |
| locations[1].id | pmid:35459032 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35459032 |
| locations[2].id | pmh:oai:doaj.org/article:5d8cb0b640154ce1b93b8c938dceb26b |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 22, Iss 8, p 3048 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/5d8cb0b640154ce1b93b8c938dceb26b |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/22/8/3048/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 22; Issue 8; Pages: 3048 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s22083048 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:9025413 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9025413 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5011442676 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9841-6703 |
| authorships[0].author.display_name | Shawhin Talebi |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[0].affiliations[0].raw_affiliation_string | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[0].institutions[0].id | https://openalex.org/I162577319 |
| authorships[0].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas at Dallas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shawhin Talebi |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[1].author.id | https://openalex.org/A5055465262 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5910-0183 |
| authorships[1].author.display_name | John Waczak |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[1].affiliations[0].raw_affiliation_string | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[1].institutions[0].id | https://openalex.org/I162577319 |
| authorships[1].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas at Dallas |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | John Waczak |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[2].author.id | https://openalex.org/A5084733377 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0667-2345 |
| authorships[2].author.display_name | Bharana Fernando |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[2].affiliations[0].raw_affiliation_string | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[2].institutions[0].id | https://openalex.org/I162577319 |
| authorships[2].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas at Dallas |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bharana A. Fernando |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[3].author.id | https://openalex.org/A5021211384 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Arjun Sridhar |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[3].affiliations[0].raw_affiliation_string | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[3].institutions[0].id | https://openalex.org/I162577319 |
| authorships[3].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | The University of Texas at Dallas |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Arjun Sridhar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[4].author.id | https://openalex.org/A5006358132 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4265-9543 |
| authorships[4].author.display_name | David J. Lary |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[4].affiliations[0].raw_affiliation_string | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| authorships[4].institutions[0].id | https://openalex.org/I162577319 |
| authorships[4].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | The University of Texas at Dallas |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | David J. Lary |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Hanson Center for Space Sciences, University of Texas at Dallas, Richardson, TX 75080, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/8/3048/pdf?version=1650019953 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data-Driven EEG Band Discovery with Decision Trees |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W3109219622, https://openalex.org/W2048665270, https://openalex.org/W2776062836, https://openalex.org/W4385282352, https://openalex.org/W3199841937, https://openalex.org/W2396592261, https://openalex.org/W1965488317, https://openalex.org/W2138735934, https://openalex.org/W3132521424, https://openalex.org/W266630859 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s22083048 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/8/3048/pdf?version=1650019953 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22083048 |
| primary_location.id | doi:10.3390/s22083048 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/8/3048/pdf?version=1650019953 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22083048 |
| publication_date | 2022-04-15 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W4242989782, https://openalex.org/W1516056970, https://openalex.org/W2601369343, https://openalex.org/W2106822551, https://openalex.org/W2591818083, https://openalex.org/W2953360276, https://openalex.org/W2368869802, https://openalex.org/W2160106765, https://openalex.org/W6755481543, https://openalex.org/W2908954394, https://openalex.org/W6679967756, https://openalex.org/W4200002176, https://openalex.org/W3145928148, https://openalex.org/W3092414793, https://openalex.org/W1965488317, https://openalex.org/W2024327410, https://openalex.org/W1964624146, https://openalex.org/W2163791372, https://openalex.org/W6675354045, https://openalex.org/W4297957988, https://openalex.org/W1987552279, https://openalex.org/W2142635246, https://openalex.org/W2910134385, https://openalex.org/W2162800060, https://openalex.org/W2895258853, https://openalex.org/W2101234009, https://openalex.org/W2134602648 |
| referenced_works_count | 27 |
| abstract_inverted_index.A | 73 |
| abstract_inverted_index.a | 3, 46, 87, 91, 110, 135, 163, 181 |
| abstract_inverted_index.an | 60, 124 |
| abstract_inverted_index.as | 45 |
| abstract_inverted_index.be | 36 |
| abstract_inverted_index.by | 151, 162 |
| abstract_inverted_index.in | 7, 173 |
| abstract_inverted_index.is | 2, 57, 77, 94, 120 |
| abstract_inverted_index.of | 54, 113, 118, 146, 165, 197 |
| abstract_inverted_index.on | 12, 69 |
| abstract_inverted_index.to | 35, 58, 96, 143, 187 |
| abstract_inverted_index.EEG | 15, 66, 84 |
| abstract_inverted_index.The | 52, 115, 177 |
| abstract_inverted_index.and | 27, 184, 192 |
| abstract_inverted_index.are | 10, 17 |
| abstract_inverted_index.for | 38, 63, 79, 86, 103, 109 |
| abstract_inverted_index.key | 168, 189 |
| abstract_inverted_index.led | 142 |
| abstract_inverted_index.new | 195 |
| abstract_inverted_index.the | 13, 82, 98, 105, 147, 156 |
| abstract_inverted_index.This | 139 |
| abstract_inverted_index.band | 101, 137, 160 |
| abstract_inverted_index.been | 33 |
| abstract_inverted_index.best | 83 |
| abstract_inverted_index.goal | 53 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.into | 20 |
| abstract_inverted_index.more | 157 |
| abstract_inverted_index.that | 131, 154 |
| abstract_inverted_index.then | 121 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.tool | 49 |
| abstract_inverted_index.tree | 93 |
| abstract_inverted_index.two. | 166 |
| abstract_inverted_index.used | 95, 159 |
| abstract_inverted_index.were | 171 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.work | 56 |
| abstract_inverted_index.(EEG) | 1 |
| abstract_inverted_index.While | 29 |
| abstract_inverted_index.bands | 22, 31, 67, 85, 119, 153 |
| abstract_inverted_index.based | 68 |
| abstract_inverted_index.beta. | 28 |
| abstract_inverted_index.brain | 4, 41, 198 |
| abstract_inverted_index.fully | 182 |
| abstract_inverted_index.given | 88 |
| abstract_inverted_index.power | 71, 107, 149 |
| abstract_inverted_index.score | 130 |
| abstract_inverted_index.shown | 34 |
| abstract_inverted_index.small | 136 |
| abstract_inverted_index.their | 43 |
| abstract_inverted_index.these | 30 |
| abstract_inverted_index.using | 123 |
| abstract_inverted_index.which | 8 |
| abstract_inverted_index.Akaike | 125 |
| abstract_inverted_index.First, | 90 |
| abstract_inverted_index.alpha, | 26 |
| abstract_inverted_index.bands. | 114, 176 |
| abstract_inverted_index.better | 144 |
| abstract_inverted_index.called | 23 |
| abstract_inverted_index.count. | 138 |
| abstract_inverted_index.delta, | 24 |
| abstract_inverted_index.factor | 164 |
| abstract_inverted_index.method | 179 |
| abstract_inverted_index.number | 112, 117 |
| abstract_inverted_index.placed | 11 |
| abstract_inverted_index.scalp. | 14 |
| abstract_inverted_index.signal | 70, 190 |
| abstract_inverted_index.theta, | 25 |
| abstract_inverted_index.useful | 37 |
| abstract_inverted_index.imaging | 5 |
| abstract_inverted_index.indices | 196 |
| abstract_inverted_index.optimal | 65, 99, 116 |
| abstract_inverted_index.outline | 59 |
| abstract_inverted_index.quality | 129 |
| abstract_inverted_index.remains | 50 |
| abstract_inverted_index.signals | 16 |
| abstract_inverted_index.states, | 42 |
| abstract_inverted_index.utility | 44 |
| abstract_inverted_index.various | 40 |
| abstract_inverted_index.analysis | 48 |
| abstract_inverted_index.approach | 141, 186 |
| abstract_inverted_index.balances | 132 |
| abstract_inverted_index.commonly | 18, 158 |
| abstract_inverted_index.dataset. | 89 |
| abstract_inverted_index.decision | 92 |
| abstract_inverted_index.estimate | 97 |
| abstract_inverted_index.flexible | 185 |
| abstract_inverted_index.isolated | 172 |
| abstract_inverted_index.possibly | 193 |
| abstract_inverted_index.proposed | 178 |
| abstract_inverted_index.provides | 180 |
| abstract_inverted_index.spectra. | 72 |
| abstract_inverted_index.spectral | 169 |
| abstract_inverted_index.spectrum | 108, 150 |
| abstract_inverted_index.strategy | 62 |
| abstract_inverted_index.two-step | 74 |
| abstract_inverted_index.unclear. | 51 |
| abstract_inverted_index.Criterion | 127 |
| abstract_inverted_index.activity. | 199 |
| abstract_inverted_index.automated | 183 |
| abstract_inverted_index.capturing | 188 |
| abstract_inverted_index.dedicated | 174 |
| abstract_inverted_index.frequency | 21, 100, 175 |
| abstract_inverted_index.objective | 61 |
| abstract_inverted_index.presented | 78 |
| abstract_inverted_index.technique | 6 |
| abstract_inverted_index.boundaries | 102, 161 |
| abstract_inverted_index.components | 170, 191 |
| abstract_inverted_index.decomposed | 19 |
| abstract_inverted_index.determined | 122 |
| abstract_inverted_index.electrodes | 9 |
| abstract_inverted_index.signal’s | 106 |
| abstract_inverted_index.underlying | 148 |
| abstract_inverted_index.Information | 126 |
| abstract_inverted_index.data-driven | 75, 140 |
| abstract_inverted_index.determining | 81 |
| abstract_inverted_index.discovering | 64, 194 |
| abstract_inverted_index.identifying | 152 |
| abstract_inverted_index.methodology | 76 |
| abstract_inverted_index.objectively | 80 |
| abstract_inverted_index.reproducing | 104 |
| abstract_inverted_index.outperformed | 155 |
| abstract_inverted_index.Additionally, | 167 |
| abstract_inverted_index.predetermined | 111 |
| abstract_inverted_index.(AIC)-inspired | 128 |
| abstract_inverted_index.characterizing | 39 |
| abstract_inverted_index.goodness-of-fit | 133 |
| abstract_inverted_index.characterization | 145 |
| abstract_inverted_index.one-size-fits-all | 47 |
| abstract_inverted_index.Electroencephalography | 0 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5011442676 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I162577319 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.77550339 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |