Data-Driven Flow-Map Models for Data-Efficient Discovery of Dynamics and Fast Uncertainty Quantification of Biological and Biochemical Systems Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.22541/au.164873215.58987330/v1
Computational models are increasingly used to investigate and predict the complex dynamics of biological and biochemical systems. Nevertheless, governing equations of a biochemical system may not be (fully) known, which would necessitate learning the system dynamics directly from, often limited and noisy, observed data. On the other hand, when expensive models are available, systematic and efficient quantification of the effects of model uncertainties on quantities of interest can be an arduous task. This paper leverages the notion of flow-map (de)compositions to present a framework that can address both of these challenges via learning data-driven models useful for capturing the dynamical behavior of biochemical systems. Data-driven flow-map models seek to directly learn the integration operators of the governing differential equations in a black-box manner, irrespective of structure of the underlying equations. As such, they can serve as a flexible approach for deriving fast-to-evaluate surrogates for expensive computational models of system dynamics, or, alternatively, for reconstructing the long-term system dynamics via experimental observations. We present a data-efficient approach to data-driven flow-map modeling based on polynomial chaos Kriging. The approach is demonstrated for discovery of the dynamics of various benchmark systems and a co-culture bioreactor subject to external forcing, as well as for uncertainty quantification of a microbial electrosynthesis reactor. Such data-driven models and analyses of dynamical systems can be paramount in the design and optimization of bioprocesses and integrated biomanufacturing systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.22541/au.164873215.58987330/v1
- https://radiopharmaconnect.srsweb.org/doi/pdf/10.22541/au.164873215.58987330
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226296409
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226296409Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22541/au.164873215.58987330/v1Digital Object Identifier
- Title
-
Data-Driven Flow-Map Models for Data-Efficient Discovery of Dynamics and Fast Uncertainty Quantification of Biological and Biochemical SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-31Full publication date if available
- Authors
-
Ali Mesbah, Georgios Makrygiorgos, Aaron J. Berliner, Fengzhe Shi, Douglas B. Clark, Adam P. ArkinList of authors in order
- Landing page
-
https://doi.org/10.22541/au.164873215.58987330/v1Publisher landing page
- PDF URL
-
https://radiopharmaconnect.srsweb.org/doi/pdf/10.22541/au.164873215.58987330Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://radiopharmaconnect.srsweb.org/doi/pdf/10.22541/au.164873215.58987330Direct OA link when available
- Concepts
-
Dynamical systems theory, Computer science, Uncertainty quantification, Black box, System dynamics, Benchmark (surveying), Polynomial chaos, Machine learning, Data mining, Artificial intelligence, Mathematics, Geography, Monte Carlo method, Physics, Quantum mechanics, Geodesy, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226296409 |
|---|---|
| doi | https://doi.org/10.22541/au.164873215.58987330/v1 |
| ids.doi | https://doi.org/10.22541/au.164873215.58987330/v1 |
| ids.openalex | https://openalex.org/W4226296409 |
| fwci | 0.0 |
| type | preprint |
| title | Data-Driven Flow-Map Models for Data-Efficient Discovery of Dynamics and Fast Uncertainty Quantification of Biological and Biochemical Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10621 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9753000140190125 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene Regulatory Network Analysis |
| topics[1].id | https://openalex.org/T11975 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9348000288009644 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Evolutionary Algorithms and Applications |
| topics[2].id | https://openalex.org/T10932 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9302999973297119 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Microbial Metabolic Engineering and Bioproduction |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79379906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6665768623352051 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3174497 |
| concepts[0].display_name | Dynamical systems theory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6640783548355103 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C32230216 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6591523289680481 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7882499 |
| concepts[2].display_name | Uncertainty quantification |
| concepts[3].id | https://openalex.org/C94966114 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46880629658699036 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q29256 |
| concepts[3].display_name | Black box |
| concepts[4].id | https://openalex.org/C77405623 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4649089276790619 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q598451 |
| concepts[4].display_name | System dynamics |
| concepts[5].id | https://openalex.org/C185798385 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4620359241962433 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[5].display_name | Benchmark (surveying) |
| concepts[6].id | https://openalex.org/C197656079 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4222554564476013 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17147719 |
| concepts[6].display_name | Polynomial chaos |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.335369348526001 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32783156633377075 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.29876482486724854 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.18100124597549438 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C19499675 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[12].display_name | Monte Carlo method |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| concepts[15].id | https://openalex.org/C13280743 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[15].display_name | Geodesy |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/dynamical-systems-theory |
| keywords[0].score | 0.6665768623352051 |
| keywords[0].display_name | Dynamical systems theory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6640783548355103 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/uncertainty-quantification |
| keywords[2].score | 0.6591523289680481 |
| keywords[2].display_name | Uncertainty quantification |
| keywords[3].id | https://openalex.org/keywords/black-box |
| keywords[3].score | 0.46880629658699036 |
| keywords[3].display_name | Black box |
| keywords[4].id | https://openalex.org/keywords/system-dynamics |
| keywords[4].score | 0.4649089276790619 |
| keywords[4].display_name | System dynamics |
| keywords[5].id | https://openalex.org/keywords/benchmark |
| keywords[5].score | 0.4620359241962433 |
| keywords[5].display_name | Benchmark (surveying) |
| keywords[6].id | https://openalex.org/keywords/polynomial-chaos |
| keywords[6].score | 0.4222554564476013 |
| keywords[6].display_name | Polynomial chaos |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.335369348526001 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.32783156633377075 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.29876482486724854 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.18100124597549438 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.22541/au.164873215.58987330/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://radiopharmaconnect.srsweb.org/doi/pdf/10.22541/au.164873215.58987330 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.22541/au.164873215.58987330/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101555401 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1700-0600 |
| authorships[0].author.display_name | Ali Mesbah |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[0].affiliations[0].raw_affiliation_string | University of California Berkeley Department of Chemical and Biomolecular Engineering |
| authorships[0].institutions[0].id | https://openalex.org/I95457486 |
| authorships[0].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Berkeley |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ali Mesbah |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of California Berkeley Department of Chemical and Biomolecular Engineering |
| authorships[1].author.id | https://openalex.org/A5025132089 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2236-5716 |
| authorships[1].author.display_name | Georgios Makrygiorgos |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California Berkeley Department of Chemical and Biomolecular Engineering |
| authorships[1].institutions[0].id | https://openalex.org/I95457486 |
| authorships[1].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Berkeley |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Georgios Makrygiorgos |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California Berkeley Department of Chemical and Biomolecular Engineering |
| authorships[2].author.id | https://openalex.org/A5004937291 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4817-3926 |
| authorships[2].author.display_name | Aaron J. Berliner |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[2].affiliations[0].raw_affiliation_string | University of California Berkeley Department of Bioengineering |
| authorships[2].institutions[0].id | https://openalex.org/I95457486 |
| authorships[2].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Berkeley |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aaron Berliner |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of California Berkeley Department of Bioengineering |
| authorships[3].author.id | https://openalex.org/A5016597534 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7008-0988 |
| authorships[3].author.display_name | Fengzhe Shi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[3].affiliations[0].raw_affiliation_string | University of California Berkeley Department of Chemical and Biomolecular Engineering |
| authorships[3].institutions[0].id | https://openalex.org/I95457486 |
| authorships[3].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Berkeley |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Fengzhe Shi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of California Berkeley Department of Chemical and Biomolecular Engineering |
| authorships[4].author.id | https://openalex.org/A5026234074 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4757-8446 |
| authorships[4].author.display_name | Douglas B. Clark |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[4].affiliations[0].raw_affiliation_string | University of California Berkeley Department of Chemical and Biomolecular Engineering |
| authorships[4].institutions[0].id | https://openalex.org/I95457486 |
| authorships[4].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, Berkeley |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Douglas Clark |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of California Berkeley Department of Chemical and Biomolecular Engineering |
| authorships[5].author.id | https://openalex.org/A5066623854 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4999-2931 |
| authorships[5].author.display_name | Adam P. Arkin |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I95457486 |
| authorships[5].affiliations[0].raw_affiliation_string | University of California Berkeley Department of Bioengineering |
| authorships[5].institutions[0].id | https://openalex.org/I95457486 |
| authorships[5].institutions[0].ror | https://ror.org/01an7q238 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I95457486 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of California, Berkeley |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Adam Arkin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of California Berkeley Department of Bioengineering |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://radiopharmaconnect.srsweb.org/doi/pdf/10.22541/au.164873215.58987330 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data-Driven Flow-Map Models for Data-Efficient Discovery of Dynamics and Fast Uncertainty Quantification of Biological and Biochemical Systems |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10621 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9753000140190125 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene Regulatory Network Analysis |
| related_works | https://openalex.org/W3215394929, https://openalex.org/W2108001913, https://openalex.org/W2517755966, https://openalex.org/W2014910883, https://openalex.org/W2789381754, https://openalex.org/W4403887298, https://openalex.org/W2981659597, https://openalex.org/W3158222746, https://openalex.org/W2998325883, https://openalex.org/W2811262943 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22541/au.164873215.58987330/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://radiopharmaconnect.srsweb.org/doi/pdf/10.22541/au.164873215.58987330 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.22541/au.164873215.58987330/v1 |
| primary_location.id | doi:10.22541/au.164873215.58987330/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://radiopharmaconnect.srsweb.org/doi/pdf/10.22541/au.164873215.58987330 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.22541/au.164873215.58987330/v1 |
| publication_date | 2022-03-31 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 21, 82, 120, 136, 163, 189, 203 |
| abstract_inverted_index.As | 130 |
| abstract_inverted_index.On | 44 |
| abstract_inverted_index.We | 161 |
| abstract_inverted_index.an | 69 |
| abstract_inverted_index.as | 135, 196, 198 |
| abstract_inverted_index.be | 26, 68, 216 |
| abstract_inverted_index.in | 119, 218 |
| abstract_inverted_index.is | 177 |
| abstract_inverted_index.of | 12, 20, 57, 60, 65, 77, 88, 101, 114, 124, 126, 147, 181, 184, 202, 212, 223 |
| abstract_inverted_index.on | 63, 171 |
| abstract_inverted_index.to | 5, 80, 108, 166, 193 |
| abstract_inverted_index.The | 175 |
| abstract_inverted_index.and | 7, 14, 40, 54, 188, 210, 221, 225 |
| abstract_inverted_index.are | 2, 51 |
| abstract_inverted_index.can | 67, 85, 133, 215 |
| abstract_inverted_index.for | 96, 139, 143, 152, 179, 199 |
| abstract_inverted_index.may | 24 |
| abstract_inverted_index.not | 25 |
| abstract_inverted_index.or, | 150 |
| abstract_inverted_index.the | 9, 33, 45, 58, 75, 98, 111, 115, 127, 154, 182, 219 |
| abstract_inverted_index.via | 91, 158 |
| abstract_inverted_index.Such | 207 |
| abstract_inverted_index.This | 72 |
| abstract_inverted_index.both | 87 |
| abstract_inverted_index.seek | 107 |
| abstract_inverted_index.that | 84 |
| abstract_inverted_index.they | 132 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.well | 197 |
| abstract_inverted_index.when | 48 |
| abstract_inverted_index.based | 170 |
| abstract_inverted_index.chaos | 173 |
| abstract_inverted_index.data. | 43 |
| abstract_inverted_index.from, | 37 |
| abstract_inverted_index.hand, | 47 |
| abstract_inverted_index.learn | 110 |
| abstract_inverted_index.model | 61 |
| abstract_inverted_index.often | 38 |
| abstract_inverted_index.other | 46 |
| abstract_inverted_index.paper | 73 |
| abstract_inverted_index.serve | 134 |
| abstract_inverted_index.such, | 131 |
| abstract_inverted_index.task. | 71 |
| abstract_inverted_index.these | 89 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.would | 30 |
| abstract_inverted_index.design | 220 |
| abstract_inverted_index.known, | 28 |
| abstract_inverted_index.models | 1, 50, 94, 106, 146, 209 |
| abstract_inverted_index.noisy, | 41 |
| abstract_inverted_index.notion | 76 |
| abstract_inverted_index.system | 23, 34, 148, 156 |
| abstract_inverted_index.useful | 95 |
| abstract_inverted_index.(fully) | 27 |
| abstract_inverted_index.address | 86 |
| abstract_inverted_index.arduous | 70 |
| abstract_inverted_index.complex | 10 |
| abstract_inverted_index.effects | 59 |
| abstract_inverted_index.limited | 39 |
| abstract_inverted_index.manner, | 122 |
| abstract_inverted_index.predict | 8 |
| abstract_inverted_index.present | 81, 162 |
| abstract_inverted_index.subject | 192 |
| abstract_inverted_index.systems | 187, 214 |
| abstract_inverted_index.various | 185 |
| abstract_inverted_index.Kriging. | 174 |
| abstract_inverted_index.analyses | 211 |
| abstract_inverted_index.approach | 138, 165, 176 |
| abstract_inverted_index.behavior | 100 |
| abstract_inverted_index.deriving | 140 |
| abstract_inverted_index.directly | 36, 109 |
| abstract_inverted_index.dynamics | 11, 35, 157, 183 |
| abstract_inverted_index.external | 194 |
| abstract_inverted_index.flexible | 137 |
| abstract_inverted_index.flow-map | 78, 105, 168 |
| abstract_inverted_index.forcing, | 195 |
| abstract_inverted_index.interest | 66 |
| abstract_inverted_index.learning | 32, 92 |
| abstract_inverted_index.modeling | 169 |
| abstract_inverted_index.observed | 42 |
| abstract_inverted_index.reactor. | 206 |
| abstract_inverted_index.systems. | 16, 103, 228 |
| abstract_inverted_index.benchmark | 186 |
| abstract_inverted_index.black-box | 121 |
| abstract_inverted_index.capturing | 97 |
| abstract_inverted_index.discovery | 180 |
| abstract_inverted_index.dynamical | 99, 213 |
| abstract_inverted_index.dynamics, | 149 |
| abstract_inverted_index.efficient | 55 |
| abstract_inverted_index.equations | 19, 118 |
| abstract_inverted_index.expensive | 49, 144 |
| abstract_inverted_index.framework | 83 |
| abstract_inverted_index.governing | 18, 116 |
| abstract_inverted_index.leverages | 74 |
| abstract_inverted_index.long-term | 155 |
| abstract_inverted_index.microbial | 204 |
| abstract_inverted_index.operators | 113 |
| abstract_inverted_index.paramount | 217 |
| abstract_inverted_index.structure | 125 |
| abstract_inverted_index.available, | 52 |
| abstract_inverted_index.biological | 13 |
| abstract_inverted_index.bioreactor | 191 |
| abstract_inverted_index.challenges | 90 |
| abstract_inverted_index.co-culture | 190 |
| abstract_inverted_index.equations. | 129 |
| abstract_inverted_index.integrated | 226 |
| abstract_inverted_index.polynomial | 172 |
| abstract_inverted_index.quantities | 64 |
| abstract_inverted_index.surrogates | 142 |
| abstract_inverted_index.systematic | 53 |
| abstract_inverted_index.underlying | 128 |
| abstract_inverted_index.Data-driven | 104 |
| abstract_inverted_index.biochemical | 15, 22, 102 |
| abstract_inverted_index.data-driven | 93, 167, 208 |
| abstract_inverted_index.integration | 112 |
| abstract_inverted_index.investigate | 6 |
| abstract_inverted_index.necessitate | 31 |
| abstract_inverted_index.uncertainty | 200 |
| abstract_inverted_index.bioprocesses | 224 |
| abstract_inverted_index.demonstrated | 178 |
| abstract_inverted_index.differential | 117 |
| abstract_inverted_index.experimental | 159 |
| abstract_inverted_index.increasingly | 3 |
| abstract_inverted_index.irrespective | 123 |
| abstract_inverted_index.optimization | 222 |
| abstract_inverted_index.Computational | 0 |
| abstract_inverted_index.Nevertheless, | 17 |
| abstract_inverted_index.computational | 145 |
| abstract_inverted_index.observations. | 160 |
| abstract_inverted_index.uncertainties | 62 |
| abstract_inverted_index.alternatively, | 151 |
| abstract_inverted_index.data-efficient | 164 |
| abstract_inverted_index.quantification | 56, 201 |
| abstract_inverted_index.reconstructing | 153 |
| abstract_inverted_index.(de)compositions | 79 |
| abstract_inverted_index.biomanufacturing | 227 |
| abstract_inverted_index.electrosynthesis | 205 |
| abstract_inverted_index.fast-to-evaluate | 141 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.04777573 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |