Data-Driven Linear Complexity Low-Rank Approximation of General Kernel Matrices: A Geometric Approach Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.12674
A general, {\em rectangular} kernel matrix may be defined as $K_{ij} = κ(x_i,y_j)$ where $κ(x,y)$ is a kernel function and where $X=\{x_i\}_{i=1}^m$ and $Y=\{y_i\}_{i=1}^n$ are two sets of points. In this paper, we seek a low-rank approximation to a kernel matrix where the sets of points $X$ and $Y$ are large and are arbitrarily distributed, such as away from each other, ``intermingled'', identical, etc. Such rectangular kernel matrices may arise, for example, in Gaussian process regression where $X$ corresponds to the training data and $Y$ corresponds to the test data. In this case, the points are often high-dimensional. Since the point sets are large, we must exploit the fact that the matrix arises from a kernel function, and avoid forming the matrix, and thus ruling out most algebraic techniques. In particular, we seek methods that can scale linearly or nearly linear with respect to the size of data for a fixed approximation rank. The main idea in this paper is to {\em geometrically} select appropriate subsets of points to construct a low rank approximation. An analysis in this paper guides how this selection should be performed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.12674
- https://arxiv.org/pdf/2212.12674
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312225824
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312225824Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.12674Digital Object Identifier
- Title
-
Data-Driven Linear Complexity Low-Rank Approximation of General Kernel Matrices: A Geometric ApproachWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-24Full publication date if available
- Authors
-
Difeng Cai, Edmond Chow, Yuanzhe XiList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.12674Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.12674Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.12674Direct OA link when available
- Concepts
-
Kernel (algebra), Mathematics, Combinatorics, Rank (graph theory), Matrix (chemical analysis), Kernel method, Gaussian function, Data point, Gaussian, Algorithm, Computer science, Physics, Artificial intelligence, Materials science, Composite material, Quantum mechanics, Support vector machineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312225824 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.12674 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.12674 |
| ids.openalex | https://openalex.org/W4312225824 |
| fwci | |
| type | preprint |
| title | Data-Driven Linear Complexity Low-Rank Approximation of General Kernel Matrices: A Geometric Approach |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9782000184059143 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T13487 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9710000157356262 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Statistical and numerical algorithms |
| topics[2].id | https://openalex.org/T10057 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9656000137329102 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Face and Expression Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C74193536 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7320809364318848 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q574844 |
| concepts[0].display_name | Kernel (algebra) |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6584054827690125 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C114614502 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5701471567153931 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[2].display_name | Combinatorics |
| concepts[3].id | https://openalex.org/C164226766 |
| concepts[3].level | 2 |
| concepts[3].score | 0.565702497959137 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[3].display_name | Rank (graph theory) |
| concepts[4].id | https://openalex.org/C106487976 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5576467514038086 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[4].display_name | Matrix (chemical analysis) |
| concepts[5].id | https://openalex.org/C122280245 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4857049882411957 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[5].display_name | Kernel method |
| concepts[6].id | https://openalex.org/C7218915 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4704534113407135 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1054475 |
| concepts[6].display_name | Gaussian function |
| concepts[7].id | https://openalex.org/C21080849 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4502326250076294 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q13611879 |
| concepts[7].display_name | Data point |
| concepts[8].id | https://openalex.org/C163716315 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3839353919029236 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[8].display_name | Gaussian |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.24737703800201416 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16796985268592834 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.10287630558013916 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08072808384895325 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C159985019 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[14].display_name | Composite material |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C12267149 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[16].display_name | Support vector machine |
| keywords[0].id | https://openalex.org/keywords/kernel |
| keywords[0].score | 0.7320809364318848 |
| keywords[0].display_name | Kernel (algebra) |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6584054827690125 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/combinatorics |
| keywords[2].score | 0.5701471567153931 |
| keywords[2].display_name | Combinatorics |
| keywords[3].id | https://openalex.org/keywords/rank |
| keywords[3].score | 0.565702497959137 |
| keywords[3].display_name | Rank (graph theory) |
| keywords[4].id | https://openalex.org/keywords/matrix |
| keywords[4].score | 0.5576467514038086 |
| keywords[4].display_name | Matrix (chemical analysis) |
| keywords[5].id | https://openalex.org/keywords/kernel-method |
| keywords[5].score | 0.4857049882411957 |
| keywords[5].display_name | Kernel method |
| keywords[6].id | https://openalex.org/keywords/gaussian-function |
| keywords[6].score | 0.4704534113407135 |
| keywords[6].display_name | Gaussian function |
| keywords[7].id | https://openalex.org/keywords/data-point |
| keywords[7].score | 0.4502326250076294 |
| keywords[7].display_name | Data point |
| keywords[8].id | https://openalex.org/keywords/gaussian |
| keywords[8].score | 0.3839353919029236 |
| keywords[8].display_name | Gaussian |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.24737703800201416 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.16796985268592834 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.10287630558013916 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.08072808384895325 |
| keywords[12].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.12674 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.12674 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.12674 |
| locations[1].id | doi:10.48550/arxiv.2212.12674 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.12674 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001132837 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9482-6425 |
| authorships[0].author.display_name | Difeng Cai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cai, Difeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5039834058 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0474-3752 |
| authorships[1].author.display_name | Edmond Chow |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chow, Edmond |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056635728 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0361-0931 |
| authorships[2].author.display_name | Yuanzhe Xi |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xi, Yuanzhe |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.12674 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-01-04T00:00:00 |
| display_name | Data-Driven Linear Complexity Low-Rank Approximation of General Kernel Matrices: A Geometric Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9782000184059143 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W2089892314, https://openalex.org/W1603091392, https://openalex.org/W4386075310, https://openalex.org/W2169565408, https://openalex.org/W2369557298, https://openalex.org/W2545232906, https://openalex.org/W2127229869, https://openalex.org/W3123056048, https://openalex.org/W2375370983, https://openalex.org/W2011212036 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.12674 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.12674 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.12674 |
| primary_location.id | pmh:oai:arXiv.org:2212.12674 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.12674 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.12674 |
| publication_date | 2022-12-24 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 11 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 16, 34, 38, 114, 149, 170 |
| abstract_inverted_index.An | 174 |
| abstract_inverted_index.In | 29, 90, 129 |
| abstract_inverted_index.as | 9, 56 |
| abstract_inverted_index.be | 7, 184 |
| abstract_inverted_index.in | 72, 156, 176 |
| abstract_inverted_index.is | 15, 159 |
| abstract_inverted_index.of | 27, 44, 146, 166 |
| abstract_inverted_index.or | 138 |
| abstract_inverted_index.to | 37, 79, 86, 143, 160, 168 |
| abstract_inverted_index.we | 32, 104, 131 |
| abstract_inverted_index.$X$ | 46, 77 |
| abstract_inverted_index.$Y$ | 48, 84 |
| abstract_inverted_index.The | 153 |
| abstract_inverted_index.and | 19, 22, 47, 51, 83, 117, 122 |
| abstract_inverted_index.are | 24, 49, 52, 95, 102 |
| abstract_inverted_index.can | 135 |
| abstract_inverted_index.for | 70, 148 |
| abstract_inverted_index.how | 180 |
| abstract_inverted_index.low | 171 |
| abstract_inverted_index.may | 6, 68 |
| abstract_inverted_index.out | 125 |
| abstract_inverted_index.the | 42, 80, 87, 93, 99, 107, 110, 120, 144 |
| abstract_inverted_index.two | 25 |
| abstract_inverted_index.Such | 64 |
| abstract_inverted_index.away | 57 |
| abstract_inverted_index.data | 82, 147 |
| abstract_inverted_index.each | 59 |
| abstract_inverted_index.etc. | 63 |
| abstract_inverted_index.fact | 108 |
| abstract_inverted_index.from | 58, 113 |
| abstract_inverted_index.idea | 155 |
| abstract_inverted_index.main | 154 |
| abstract_inverted_index.most | 126 |
| abstract_inverted_index.must | 105 |
| abstract_inverted_index.rank | 172 |
| abstract_inverted_index.seek | 33, 132 |
| abstract_inverted_index.sets | 26, 43, 101 |
| abstract_inverted_index.size | 145 |
| abstract_inverted_index.such | 55 |
| abstract_inverted_index.test | 88 |
| abstract_inverted_index.that | 109, 134 |
| abstract_inverted_index.this | 30, 91, 157, 177, 181 |
| abstract_inverted_index.thus | 123 |
| abstract_inverted_index.with | 141 |
| abstract_inverted_index.{\em | 2, 161 |
| abstract_inverted_index.Since | 98 |
| abstract_inverted_index.avoid | 118 |
| abstract_inverted_index.case, | 92 |
| abstract_inverted_index.data. | 89 |
| abstract_inverted_index.fixed | 150 |
| abstract_inverted_index.large | 50 |
| abstract_inverted_index.often | 96 |
| abstract_inverted_index.paper | 158, 178 |
| abstract_inverted_index.point | 100 |
| abstract_inverted_index.rank. | 152 |
| abstract_inverted_index.scale | 136 |
| abstract_inverted_index.where | 13, 20, 41, 76 |
| abstract_inverted_index.arise, | 69 |
| abstract_inverted_index.arises | 112 |
| abstract_inverted_index.guides | 179 |
| abstract_inverted_index.kernel | 4, 17, 39, 66, 115 |
| abstract_inverted_index.large, | 103 |
| abstract_inverted_index.linear | 140 |
| abstract_inverted_index.matrix | 5, 40, 111 |
| abstract_inverted_index.nearly | 139 |
| abstract_inverted_index.other, | 60 |
| abstract_inverted_index.paper, | 31 |
| abstract_inverted_index.points | 45, 94, 167 |
| abstract_inverted_index.ruling | 124 |
| abstract_inverted_index.select | 163 |
| abstract_inverted_index.should | 183 |
| abstract_inverted_index.$K_{ij} | 10 |
| abstract_inverted_index.defined | 8 |
| abstract_inverted_index.exploit | 106 |
| abstract_inverted_index.forming | 119 |
| abstract_inverted_index.matrix, | 121 |
| abstract_inverted_index.methods | 133 |
| abstract_inverted_index.points. | 28 |
| abstract_inverted_index.process | 74 |
| abstract_inverted_index.respect | 142 |
| abstract_inverted_index.subsets | 165 |
| abstract_inverted_index.Gaussian | 73 |
| abstract_inverted_index.analysis | 175 |
| abstract_inverted_index.example, | 71 |
| abstract_inverted_index.function | 18 |
| abstract_inverted_index.general, | 1 |
| abstract_inverted_index.linearly | 137 |
| abstract_inverted_index.low-rank | 35 |
| abstract_inverted_index.matrices | 67 |
| abstract_inverted_index.training | 81 |
| abstract_inverted_index.$κ(x,y)$ | 14 |
| abstract_inverted_index.algebraic | 127 |
| abstract_inverted_index.construct | 169 |
| abstract_inverted_index.function, | 116 |
| abstract_inverted_index.selection | 182 |
| abstract_inverted_index.identical, | 62 |
| abstract_inverted_index.performed. | 185 |
| abstract_inverted_index.regression | 75 |
| abstract_inverted_index.appropriate | 164 |
| abstract_inverted_index.arbitrarily | 53 |
| abstract_inverted_index.corresponds | 78, 85 |
| abstract_inverted_index.particular, | 130 |
| abstract_inverted_index.rectangular | 65 |
| abstract_inverted_index.techniques. | 128 |
| abstract_inverted_index.distributed, | 54 |
| abstract_inverted_index.rectangular} | 3 |
| abstract_inverted_index.κ(x_i,y_j)$ | 12 |
| abstract_inverted_index.approximation | 36, 151 |
| abstract_inverted_index.approximation. | 173 |
| abstract_inverted_index.geometrically} | 162 |
| abstract_inverted_index.``intermingled'', | 61 |
| abstract_inverted_index.high-dimensional. | 97 |
| abstract_inverted_index.$X=\{x_i\}_{i=1}^m$ | 21 |
| abstract_inverted_index.$Y=\{y_i\}_{i=1}^n$ | 23 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |