Data-driven Thermal Model Inference with ARMAX, in Smart Environments, based on Normalized Mutual Information Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.23919/acc.2018.8431085
Understanding the models that characterize the thermal dynamics in a smart building is important for the comfort of its occupants and for its energy optimization. Here, a significant amount of research has attempted to utilize thermodynamics (physical) models for smart building control, but these approaches remain challenging due to the stochastic nature of the intermittent environmental disturbances. This paper presents a novel data-driven approach for indoor thermal model inference, which combines an Autoregressive Moving Average with eXogenous inputs model (ARMAX) with a Normalized Mutual Information scheme (NMI). Based on this information-theoretic method, NMI, causal dependencies between the indoor temperature and exogenous inputs are explicitly obtained as a guideline for the ARMAX model to find the dominating inputs. For validation, we use three datasets based on building energy systems-against which we compare our method to an autoregressive model with exogenous inputs (ARX), a regularized ARMAX model, and state-space models.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.23919/acc.2018.8431085
- OA Status
- green
- Cited By
- 9
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2887173702
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2887173702Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.23919/acc.2018.8431085Digital Object Identifier
- Title
-
Data-driven Thermal Model Inference with ARMAX, in Smart Environments, based on Normalized Mutual InformationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-06-01Full publication date if available
- Authors
-
Zhanhong Jiang, Jonathan Francis, Anit Kumar Sahu, Sirajum Munir, Charles Shelton, Anthony Rowe, Mario BergésList of authors in order
- Landing page
-
https://doi.org/10.23919/acc.2018.8431085Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.06088Direct OA link when available
- Concepts
-
Autoregressive model, Inference, Computer science, Mutual information, Building automation, Autoregressive–moving-average model, Data mining, Artificial intelligence, Econometrics, Mathematics, Thermodynamics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 1, 2020: 4, 2019: 3Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2887173702 |
|---|---|
| doi | https://doi.org/10.23919/acc.2018.8431085 |
| ids.doi | https://doi.org/10.23919/acc.2018.8431085 |
| ids.mag | 2887173702 |
| ids.openalex | https://openalex.org/W2887173702 |
| fwci | 1.42478864 |
| type | preprint |
| title | Data-driven Thermal Model Inference with ARMAX, in Smart Environments, based on Normalized Mutual Information |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4639 |
| biblio.first_page | 4634 |
| topics[0].id | https://openalex.org/T10121 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Building Energy and Comfort Optimization |
| topics[1].id | https://openalex.org/T11052 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9782999753952026 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Energy Load and Power Forecasting |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9301999807357788 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320306084 |
| funders[1].ror | https://ror.org/01bj3aw27 |
| funders[1].display_name | U.S. Department of Energy |
| funders[2].id | https://openalex.org/F4320311090 |
| funders[2].ror | https://ror.org/04rswrd78 |
| funders[2].display_name | Iowa State University |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C159877910 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7243214249610901 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[0].display_name | Autoregressive model |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6177752017974854 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5978178977966309 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C152139883 |
| concepts[3].level | 2 |
| concepts[3].score | 0.546516478061676 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q252973 |
| concepts[3].display_name | Mutual information |
| concepts[4].id | https://openalex.org/C83931994 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4577575623989105 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1149653 |
| concepts[4].display_name | Building automation |
| concepts[5].id | https://openalex.org/C74883015 |
| concepts[5].level | 3 |
| concepts[5].score | 0.44654184579849243 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q290467 |
| concepts[5].display_name | Autoregressive–moving-average model |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.41686689853668213 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.31697311997413635 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2558214068412781 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20878860354423523 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C97355855 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[10].display_name | Thermodynamics |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/autoregressive-model |
| keywords[0].score | 0.7243214249610901 |
| keywords[0].display_name | Autoregressive model |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6177752017974854 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5978178977966309 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/mutual-information |
| keywords[3].score | 0.546516478061676 |
| keywords[3].display_name | Mutual information |
| keywords[4].id | https://openalex.org/keywords/building-automation |
| keywords[4].score | 0.4577575623989105 |
| keywords[4].display_name | Building automation |
| keywords[5].id | https://openalex.org/keywords/autoregressive–moving-average-model |
| keywords[5].score | 0.44654184579849243 |
| keywords[5].display_name | Autoregressive–moving-average model |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.41686689853668213 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.31697311997413635 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.2558214068412781 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.20878860354423523 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.23919/acc.2018.8431085 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2018 Annual American Control Conference (ACC) |
| locations[0].landing_page_url | https://doi.org/10.23919/acc.2018.8431085 |
| locations[1].id | pmh:oai:arXiv.org:2006.06088 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2006.06088 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2006.06088 |
| locations[2].id | pmh:oai:osti.gov:1812201 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/1812201 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5031212270 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5363-7898 |
| authorships[0].author.display_name | Zhanhong Jiang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173911158 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Iowa State University, Ames, IA |
| authorships[0].institutions[0].id | https://openalex.org/I173911158 |
| authorships[0].institutions[0].ror | https://ror.org/04rswrd78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I173911158 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Iowa State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhanhong Jiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mechanical Engineering, Iowa State University, Ames, IA |
| authorships[1].author.id | https://openalex.org/A5045755805 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0556-1136 |
| authorships[1].author.display_name | Jonathan Francis |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210120115 |
| authorships[1].affiliations[0].raw_affiliation_string | Bosch Research & Technology Center North America, Pittsburgh, PA |
| authorships[1].institutions[0].id | https://openalex.org/I4210120115 |
| authorships[1].institutions[0].ror | https://ror.org/02venad53 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210120115, https://openalex.org/I889804353 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Robert Bosch (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonathan Francis |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Bosch Research & Technology Center North America, Pittsburgh, PA |
| authorships[2].author.id | https://openalex.org/A5019965945 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4083-0418 |
| authorships[2].author.display_name | Anit Kumar Sahu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA |
| authorships[2].institutions[0].id | https://openalex.org/I74973139 |
| authorships[2].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Carnegie Mellon University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Anit Kumar Sahu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA |
| authorships[3].author.id | https://openalex.org/A5043367646 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0624-2580 |
| authorships[3].author.display_name | Sirajum Munir |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210120115 |
| authorships[3].affiliations[0].raw_affiliation_string | Bosch Research & Technology Center North America, Pittsburgh, PA |
| authorships[3].institutions[0].id | https://openalex.org/I4210120115 |
| authorships[3].institutions[0].ror | https://ror.org/02venad53 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210120115, https://openalex.org/I889804353 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Robert Bosch (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sirajum Munir |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Bosch Research & Technology Center North America, Pittsburgh, PA |
| authorships[4].author.id | https://openalex.org/A5113507166 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Charles Shelton |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210120115 |
| authorships[4].affiliations[0].raw_affiliation_string | Bosch Research & Technology Center North America, Pittsburgh, PA |
| authorships[4].institutions[0].id | https://openalex.org/I4210120115 |
| authorships[4].institutions[0].ror | https://ror.org/02venad53 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210120115, https://openalex.org/I889804353 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Robert Bosch (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Charles Shelton |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Bosch Research & Technology Center North America, Pittsburgh, PA |
| authorships[5].author.id | https://openalex.org/A5056379112 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2332-9450 |
| authorships[5].author.display_name | Anthony Rowe |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA |
| authorships[5].institutions[0].id | https://openalex.org/I74973139 |
| authorships[5].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Carnegie Mellon University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Anthony Rowe |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA |
| authorships[6].author.id | https://openalex.org/A5064458775 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2948-9236 |
| authorships[6].author.display_name | Mario Bergés |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I74973139 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA |
| authorships[6].institutions[0].id | https://openalex.org/I74973139 |
| authorships[6].institutions[0].ror | https://ror.org/05x2bcf33 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I74973139 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Carnegie Mellon University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Mario Berges |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.06088 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2018-08-22T00:00:00 |
| display_name | Data-driven Thermal Model Inference with ARMAX, in Smart Environments, based on Normalized Mutual Information |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10121 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Building Energy and Comfort Optimization |
| related_works | https://openalex.org/W2466816617, https://openalex.org/W2171218219, https://openalex.org/W1972271943, https://openalex.org/W1970834875, https://openalex.org/W842936808, https://openalex.org/W3174028392, https://openalex.org/W199725827, https://openalex.org/W4248896451, https://openalex.org/W4394470125, https://openalex.org/W1983856919 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.06088 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.06088 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.06088 |
| primary_location.id | doi:10.23919/acc.2018.8431085 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2018 Annual American Control Conference (ACC) |
| primary_location.landing_page_url | https://doi.org/10.23919/acc.2018.8431085 |
| publication_date | 2018-06-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2053431623, https://openalex.org/W2029912855, https://openalex.org/W2182886880, https://openalex.org/W6684050148, https://openalex.org/W2241103921, https://openalex.org/W2165521059, https://openalex.org/W2076170369, https://openalex.org/W2302166587, https://openalex.org/W2059891670, https://openalex.org/W2104325473, https://openalex.org/W2152365410, https://openalex.org/W1967263267, https://openalex.org/W2428794635, https://openalex.org/W2057936307, https://openalex.org/W2619449025, https://openalex.org/W2029636202, https://openalex.org/W6688016784, https://openalex.org/W4285719527, https://openalex.org/W2949721659, https://openalex.org/W4245901086, https://openalex.org/W2207848452, https://openalex.org/W2162833336, https://openalex.org/W2949126627, https://openalex.org/W2594760655, https://openalex.org/W4307612903 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 9, 26, 60, 81, 106, 141 |
| abstract_inverted_index.an | 71, 134 |
| abstract_inverted_index.as | 105 |
| abstract_inverted_index.in | 8 |
| abstract_inverted_index.is | 12 |
| abstract_inverted_index.of | 17, 29, 52 |
| abstract_inverted_index.on | 88, 124 |
| abstract_inverted_index.to | 33, 48, 112, 133 |
| abstract_inverted_index.we | 119, 129 |
| abstract_inverted_index.For | 117 |
| abstract_inverted_index.and | 20, 99, 145 |
| abstract_inverted_index.are | 102 |
| abstract_inverted_index.but | 42 |
| abstract_inverted_index.due | 47 |
| abstract_inverted_index.for | 14, 21, 38, 64, 108 |
| abstract_inverted_index.has | 31 |
| abstract_inverted_index.its | 18, 22 |
| abstract_inverted_index.our | 131 |
| abstract_inverted_index.the | 1, 5, 15, 49, 53, 96, 109, 114 |
| abstract_inverted_index.use | 120 |
| abstract_inverted_index.NMI, | 92 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.find | 113 |
| abstract_inverted_index.that | 3 |
| abstract_inverted_index.this | 89 |
| abstract_inverted_index.with | 75, 80, 137 |
| abstract_inverted_index.ARMAX | 110, 143 |
| abstract_inverted_index.Based | 87 |
| abstract_inverted_index.Here, | 25 |
| abstract_inverted_index.based | 123 |
| abstract_inverted_index.model | 67, 78, 111, 136 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.paper | 58 |
| abstract_inverted_index.smart | 10, 39 |
| abstract_inverted_index.these | 43 |
| abstract_inverted_index.three | 121 |
| abstract_inverted_index.which | 69, 128 |
| abstract_inverted_index.(ARX), | 140 |
| abstract_inverted_index.(NMI). | 86 |
| abstract_inverted_index.Moving | 73 |
| abstract_inverted_index.Mutual | 83 |
| abstract_inverted_index.amount | 28 |
| abstract_inverted_index.causal | 93 |
| abstract_inverted_index.energy | 23, 126 |
| abstract_inverted_index.indoor | 65, 97 |
| abstract_inverted_index.inputs | 77, 101, 139 |
| abstract_inverted_index.method | 132 |
| abstract_inverted_index.model, | 144 |
| abstract_inverted_index.models | 2, 37 |
| abstract_inverted_index.nature | 51 |
| abstract_inverted_index.remain | 45 |
| abstract_inverted_index.scheme | 85 |
| abstract_inverted_index.(ARMAX) | 79 |
| abstract_inverted_index.Average | 74 |
| abstract_inverted_index.between | 95 |
| abstract_inverted_index.comfort | 16 |
| abstract_inverted_index.compare | 130 |
| abstract_inverted_index.inputs. | 116 |
| abstract_inverted_index.method, | 91 |
| abstract_inverted_index.models. | 147 |
| abstract_inverted_index.thermal | 6, 66 |
| abstract_inverted_index.utilize | 34 |
| abstract_inverted_index.approach | 63 |
| abstract_inverted_index.building | 11, 40, 125 |
| abstract_inverted_index.combines | 70 |
| abstract_inverted_index.control, | 41 |
| abstract_inverted_index.datasets | 122 |
| abstract_inverted_index.dynamics | 7 |
| abstract_inverted_index.obtained | 104 |
| abstract_inverted_index.presents | 59 |
| abstract_inverted_index.research | 30 |
| abstract_inverted_index.attempted | 32 |
| abstract_inverted_index.eXogenous | 76 |
| abstract_inverted_index.exogenous | 100, 138 |
| abstract_inverted_index.guideline | 107 |
| abstract_inverted_index.important | 13 |
| abstract_inverted_index.occupants | 19 |
| abstract_inverted_index.(physical) | 36 |
| abstract_inverted_index.Normalized | 82 |
| abstract_inverted_index.approaches | 44 |
| abstract_inverted_index.dominating | 115 |
| abstract_inverted_index.explicitly | 103 |
| abstract_inverted_index.inference, | 68 |
| abstract_inverted_index.stochastic | 50 |
| abstract_inverted_index.Information | 84 |
| abstract_inverted_index.challenging | 46 |
| abstract_inverted_index.data-driven | 62 |
| abstract_inverted_index.regularized | 142 |
| abstract_inverted_index.significant | 27 |
| abstract_inverted_index.state-space | 146 |
| abstract_inverted_index.temperature | 98 |
| abstract_inverted_index.validation, | 118 |
| abstract_inverted_index.characterize | 4 |
| abstract_inverted_index.dependencies | 94 |
| abstract_inverted_index.intermittent | 54 |
| abstract_inverted_index.Understanding | 0 |
| abstract_inverted_index.disturbances. | 56 |
| abstract_inverted_index.environmental | 55 |
| abstract_inverted_index.optimization. | 24 |
| abstract_inverted_index.Autoregressive | 72 |
| abstract_inverted_index.autoregressive | 135 |
| abstract_inverted_index.thermodynamics | 35 |
| abstract_inverted_index.systems-against | 127 |
| abstract_inverted_index.information-theoretic | 90 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.80714596 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |