Data Encoding for Byzantine-Resilient Distributed Optimization Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1109/tit.2020.3035868
We study distributed optimization in the presence of Byzantine adversaries, where both data and computation are distributed among $m$ worker machines, $t$ of which may be corrupt. The compromised nodes may collaboratively and arbitrarily deviate from their pre-specified programs, and a designated (master) node iteratively computes the model/parameter vector for generalized linear models. In this work, we primarily focus on two iterative algorithms: Proximal Gradient Descent (PGD) and Coordinate Descent (CD). Gradient descent (GD) is a special case of these algorithms. PGD is typically used in the data-parallel setting, where data is partitioned across different samples, whereas, CD is used in the model-parallelism setting, where data is partitioned across the parameter space. In this paper, we propose a method based on data encoding and error correction over real numbers to combat adversarial attacks. We can tolerate up to $t\leq \lfloor\frac{m-1}{2}\rfloor$ corrupt worker nodes, which is information-theoretically optimal. We give deterministic guarantees, and our method does not assume any probability distribution on the data. We develop a {\em sparse} encoding scheme which enables computationally efficient data encoding and decoding. We demonstrate a trade-off between the corruption threshold and the resource requirements (storage, computational, and communication complexity). As an example, for $t\leq\frac{m}{3}$, our scheme incurs only a {\em constant} overhead on these resources, over that required by the plain distributed PGD/CD algorithms which provide no adversarial protection. To the best of our knowledge, ours is the first paper that makes CD secure against adversarial attacks. Our encoding scheme extends efficiently to the data streaming model and for stochastic gradient descent (SGD). We also give experimental results to show the efficacy of our proposed schemes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1109/tit.2020.3035868
- OA Status
- green
- Cited By
- 6
- References
- 86
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2954114036
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2954114036Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tit.2020.3035868Digital Object Identifier
- Title
-
Data Encoding for Byzantine-Resilient Distributed OptimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-04Full publication date if available
- Authors
-
Deepesh Data, Linqi Song, Suhas DiggaviList of authors in order
- Landing page
-
https://doi.org/10.1109/tit.2020.3035868Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1907.02664Direct OA link when available
- Concepts
-
Overhead (engineering), Computer science, Encoding (memory), Node (physics), Decoding methods, Gradient descent, Algorithm, Scheme (mathematics), Theoretical computer science, Mathematics, Artificial neural network, Machine learning, Engineering, Mathematical analysis, Artificial intelligence, Structural engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 3, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
86Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2954114036 |
|---|---|
| doi | https://doi.org/10.1109/tit.2020.3035868 |
| ids.doi | https://doi.org/10.48550/arxiv.1907.02664 |
| ids.mag | 2954114036 |
| ids.openalex | https://openalex.org/W2954114036 |
| fwci | 0.73429774 |
| type | preprint |
| title | Data Encoding for Byzantine-Resilient Distributed Optimization |
| biblio.issue | 2 |
| biblio.volume | 67 |
| biblio.last_page | 1140 |
| biblio.first_page | 1117 |
| topics[0].id | https://openalex.org/T11612 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Stochastic Gradient Optimization Techniques |
| topics[1].id | https://openalex.org/T10764 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Privacy-Preserving Technologies in Data |
| topics[2].id | https://openalex.org/T12056 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Markov Chains and Monte Carlo Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779960059 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7006947994232178 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7113681 |
| concepts[0].display_name | Overhead (engineering) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6500816345214844 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C125411270 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6496515274047852 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18653 |
| concepts[2].display_name | Encoding (memory) |
| concepts[3].id | https://openalex.org/C62611344 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6003736853599548 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[3].display_name | Node (physics) |
| concepts[4].id | https://openalex.org/C57273362 |
| concepts[4].level | 2 |
| concepts[4].score | 0.540452778339386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[4].display_name | Decoding methods |
| concepts[5].id | https://openalex.org/C153258448 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4749743342399597 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[5].display_name | Gradient descent |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.46063339710235596 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C77618280 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4394252598285675 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[7].display_name | Scheme (mathematics) |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3822749853134155 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.24641594290733337 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0901908278465271 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C66938386 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[15].display_name | Structural engineering |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/overhead |
| keywords[0].score | 0.7006947994232178 |
| keywords[0].display_name | Overhead (engineering) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6500816345214844 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/encoding |
| keywords[2].score | 0.6496515274047852 |
| keywords[2].display_name | Encoding (memory) |
| keywords[3].id | https://openalex.org/keywords/node |
| keywords[3].score | 0.6003736853599548 |
| keywords[3].display_name | Node (physics) |
| keywords[4].id | https://openalex.org/keywords/decoding-methods |
| keywords[4].score | 0.540452778339386 |
| keywords[4].display_name | Decoding methods |
| keywords[5].id | https://openalex.org/keywords/gradient-descent |
| keywords[5].score | 0.4749743342399597 |
| keywords[5].display_name | Gradient descent |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.46063339710235596 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/scheme |
| keywords[7].score | 0.4394252598285675 |
| keywords[7].display_name | Scheme (mathematics) |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.3822749853134155 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.24641594290733337 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.0901908278465271 |
| keywords[10].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1109/tit.2020.3035868 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4502562 |
| locations[0].source.issn | 0018-9448, 1557-9654 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0018-9448 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Information Theory |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Information Theory |
| locations[0].landing_page_url | https://doi.org/10.1109/tit.2020.3035868 |
| locations[1].id | pmh:oai:arXiv.org:1907.02664 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1907.02664 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1907.02664 |
| locations[2].id | mag:2954114036 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/1907.02664 |
| locations[3].id | doi:10.48550/arxiv.1907.02664 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.1907.02664 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5023777978 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3544-8414 |
| authorships[0].author.display_name | Deepesh Data |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of California at Los Angeles (UCLA), Los Angeles, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I161318765 |
| authorships[0].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Los Angeles |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deepesh Data |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of California at Los Angeles (UCLA), Los Angeles, CA, USA |
| authorships[1].author.id | https://openalex.org/A5035185924 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2756-4984 |
| authorships[1].author.display_name | Linqi Song |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, University of California at Los Angeles (UCLA), Los Angeles, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I161318765 |
| authorships[1].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, Los Angeles |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Linqi Song |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, University of California at Los Angeles (UCLA), Los Angeles, CA, USA |
| authorships[2].author.id | https://openalex.org/A5083980887 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7313-9861 |
| authorships[2].author.display_name | Suhas Diggavi |
| authorships[2].countries | HK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I168719708 |
| authorships[2].affiliations[0].raw_affiliation_string | Computer Science Dept., City University of Hong Kong, Hong Kong |
| authorships[2].institutions[0].id | https://openalex.org/I168719708 |
| authorships[2].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[2].institutions[0].country_code | HK |
| authorships[2].institutions[0].display_name | City University of Hong Kong |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Suhas Diggavi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computer Science Dept., City University of Hong Kong, Hong Kong |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1907.02664 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data Encoding for Byzantine-Resilient Distributed Optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11612 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Stochastic Gradient Optimization Techniques |
| related_works | https://openalex.org/W3096199834, https://openalex.org/W2964261056, https://openalex.org/W2995022099, https://openalex.org/W2970349186, https://openalex.org/W2789911054, https://openalex.org/W2541884796, https://openalex.org/W3167719345, https://openalex.org/W2902116018, https://openalex.org/W2757498728, https://openalex.org/W3016695012, https://openalex.org/W3089170718, https://openalex.org/W2936505828, https://openalex.org/W3046631438, https://openalex.org/W3159302701, https://openalex.org/W3194742865, https://openalex.org/W1594030676, https://openalex.org/W1524363533, https://openalex.org/W3010127242, https://openalex.org/W2766727651, https://openalex.org/W2964333472 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:1907.02664 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1907.02664 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1907.02664 |
| primary_location.id | doi:10.1109/tit.2020.3035868 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4502562 |
| primary_location.source.issn | 0018-9448, 1557-9654 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0018-9448 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Information Theory |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Information Theory |
| primary_location.landing_page_url | https://doi.org/10.1109/tit.2020.3035868 |
| publication_date | 2020-11-04 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W3006097074, https://openalex.org/W6684409620, https://openalex.org/W2268702383, https://openalex.org/W6779439156, https://openalex.org/W6779722313, https://openalex.org/W6777558252, https://openalex.org/W4250589301, https://openalex.org/W2129131372, https://openalex.org/W6730190955, https://openalex.org/W1506342804, https://openalex.org/W26556108, https://openalex.org/W6763780468, https://openalex.org/W2963334472, https://openalex.org/W6752557422, https://openalex.org/W2977013187, https://openalex.org/W2913808958, https://openalex.org/W6748786018, https://openalex.org/W2997826898, https://openalex.org/W6748626757, https://openalex.org/W6752429284, https://openalex.org/W6762462524, https://openalex.org/W6766633873, https://openalex.org/W2992646835, https://openalex.org/W2397857137, https://openalex.org/W2153609494, https://openalex.org/W19684845, https://openalex.org/W6676963778, https://openalex.org/W1994616650, https://openalex.org/W2129569662, https://openalex.org/W1967717294, https://openalex.org/W6743821447, https://openalex.org/W6754358263, https://openalex.org/W1982063824, https://openalex.org/W2614254310, https://openalex.org/W114517082, https://openalex.org/W6684859321, https://openalex.org/W6677418025, https://openalex.org/W2000769684, https://openalex.org/W2032395696, https://openalex.org/W2095984592, https://openalex.org/W2173213060, https://openalex.org/W2976829912, https://openalex.org/W6738250615, https://openalex.org/W6684249991, https://openalex.org/W2729686365, https://openalex.org/W2807801669, https://openalex.org/W2141420453, https://openalex.org/W3137092842, https://openalex.org/W2963706835, https://openalex.org/W2935717345, https://openalex.org/W6749835716, https://openalex.org/W2962208489, https://openalex.org/W6748805329, https://openalex.org/W6743655711, https://openalex.org/W6741764668, https://openalex.org/W6742061381, https://openalex.org/W2940527161, https://openalex.org/W2166168182, https://openalex.org/W2168231600, https://openalex.org/W2962873681, https://openalex.org/W2166706236, https://openalex.org/W2265931279, https://openalex.org/W2741736887, https://openalex.org/W3111898548, https://openalex.org/W2964279249, https://openalex.org/W3035917281, https://openalex.org/W2970349186, https://openalex.org/W3025254786, https://openalex.org/W2963228337, https://openalex.org/W2949505878, https://openalex.org/W2963495269, https://openalex.org/W2752689052, https://openalex.org/W2112269233, https://openalex.org/W2964261056, https://openalex.org/W1969048569, https://openalex.org/W2056099894, https://openalex.org/W3034600652, https://openalex.org/W2120510885, https://openalex.org/W2963256807, https://openalex.org/W2963165390, https://openalex.org/W2964275427, https://openalex.org/W1603765807, https://openalex.org/W2296319761, https://openalex.org/W2962727278, https://openalex.org/W2946633206, https://openalex.org/W2963120442 |
| referenced_works_count | 86 |
| abstract_inverted_index.a | 40, 75, 117, 165, 180, 204 |
| abstract_inverted_index.As | 195 |
| abstract_inverted_index.CD | 97, 238 |
| abstract_inverted_index.In | 53, 112 |
| abstract_inverted_index.To | 225 |
| abstract_inverted_index.We | 0, 133, 147, 163, 178, 259 |
| abstract_inverted_index.an | 196 |
| abstract_inverted_index.be | 25 |
| abstract_inverted_index.by | 214 |
| abstract_inverted_index.in | 4, 85, 100 |
| abstract_inverted_index.is | 74, 82, 91, 98, 106, 144, 232 |
| abstract_inverted_index.no | 222 |
| abstract_inverted_index.of | 7, 22, 78, 228, 268 |
| abstract_inverted_index.on | 59, 120, 160, 208 |
| abstract_inverted_index.to | 129, 137, 248, 264 |
| abstract_inverted_index.up | 136 |
| abstract_inverted_index.we | 56, 115 |
| abstract_inverted_index.$m$ | 18 |
| abstract_inverted_index.$t$ | 21 |
| abstract_inverted_index.Our | 243 |
| abstract_inverted_index.PGD | 81 |
| abstract_inverted_index.The | 27 |
| abstract_inverted_index.and | 13, 32, 39, 67, 123, 151, 176, 186, 192, 253 |
| abstract_inverted_index.any | 157 |
| abstract_inverted_index.are | 15 |
| abstract_inverted_index.can | 134 |
| abstract_inverted_index.for | 49, 198, 254 |
| abstract_inverted_index.may | 24, 30 |
| abstract_inverted_index.not | 155 |
| abstract_inverted_index.our | 152, 200, 229, 269 |
| abstract_inverted_index.the | 5, 46, 86, 101, 109, 161, 183, 187, 215, 226, 233, 249, 266 |
| abstract_inverted_index.two | 60 |
| abstract_inverted_index.(GD) | 73 |
| abstract_inverted_index.also | 260 |
| abstract_inverted_index.best | 227 |
| abstract_inverted_index.both | 11 |
| abstract_inverted_index.case | 77 |
| abstract_inverted_index.data | 12, 90, 105, 121, 174, 250 |
| abstract_inverted_index.does | 154 |
| abstract_inverted_index.from | 35 |
| abstract_inverted_index.give | 148, 261 |
| abstract_inverted_index.node | 43 |
| abstract_inverted_index.only | 203 |
| abstract_inverted_index.ours | 231 |
| abstract_inverted_index.over | 126, 211 |
| abstract_inverted_index.real | 127 |
| abstract_inverted_index.show | 265 |
| abstract_inverted_index.that | 212, 236 |
| abstract_inverted_index.this | 54, 113 |
| abstract_inverted_index.used | 84, 99 |
| abstract_inverted_index.{\em | 166, 205 |
| abstract_inverted_index.(CD). | 70 |
| abstract_inverted_index.(PGD) | 66 |
| abstract_inverted_index.among | 17 |
| abstract_inverted_index.based | 119 |
| abstract_inverted_index.data. | 162 |
| abstract_inverted_index.error | 124 |
| abstract_inverted_index.first | 234 |
| abstract_inverted_index.focus | 58 |
| abstract_inverted_index.makes | 237 |
| abstract_inverted_index.model | 252 |
| abstract_inverted_index.nodes | 29 |
| abstract_inverted_index.paper | 235 |
| abstract_inverted_index.plain | 216 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.their | 36 |
| abstract_inverted_index.these | 79, 209 |
| abstract_inverted_index.where | 10, 89, 104 |
| abstract_inverted_index.which | 23, 143, 170, 220 |
| abstract_inverted_index.work, | 55 |
| abstract_inverted_index.$t\leq | 138 |
| abstract_inverted_index.(SGD). | 258 |
| abstract_inverted_index.PGD/CD | 218 |
| abstract_inverted_index.across | 93, 108 |
| abstract_inverted_index.assume | 156 |
| abstract_inverted_index.combat | 130 |
| abstract_inverted_index.incurs | 202 |
| abstract_inverted_index.linear | 51 |
| abstract_inverted_index.method | 118, 153 |
| abstract_inverted_index.nodes, | 142 |
| abstract_inverted_index.paper, | 114 |
| abstract_inverted_index.scheme | 169, 201, 245 |
| abstract_inverted_index.secure | 239 |
| abstract_inverted_index.space. | 111 |
| abstract_inverted_index.vector | 48 |
| abstract_inverted_index.worker | 19, 141 |
| abstract_inverted_index.Descent | 65, 69 |
| abstract_inverted_index.against | 240 |
| abstract_inverted_index.between | 182 |
| abstract_inverted_index.corrupt | 140 |
| abstract_inverted_index.descent | 72, 257 |
| abstract_inverted_index.develop | 164 |
| abstract_inverted_index.deviate | 34 |
| abstract_inverted_index.enables | 171 |
| abstract_inverted_index.extends | 246 |
| abstract_inverted_index.models. | 52 |
| abstract_inverted_index.numbers | 128 |
| abstract_inverted_index.propose | 116 |
| abstract_inverted_index.provide | 221 |
| abstract_inverted_index.results | 263 |
| abstract_inverted_index.sparse} | 167 |
| abstract_inverted_index.special | 76 |
| abstract_inverted_index.(master) | 42 |
| abstract_inverted_index.Gradient | 64, 71 |
| abstract_inverted_index.Proximal | 63 |
| abstract_inverted_index.attacks. | 132, 242 |
| abstract_inverted_index.computes | 45 |
| abstract_inverted_index.corrupt. | 26 |
| abstract_inverted_index.efficacy | 267 |
| abstract_inverted_index.encoding | 122, 168, 175, 244 |
| abstract_inverted_index.example, | 197 |
| abstract_inverted_index.gradient | 256 |
| abstract_inverted_index.optimal. | 146 |
| abstract_inverted_index.overhead | 207 |
| abstract_inverted_index.presence | 6 |
| abstract_inverted_index.proposed | 270 |
| abstract_inverted_index.required | 213 |
| abstract_inverted_index.resource | 188 |
| abstract_inverted_index.samples, | 95 |
| abstract_inverted_index.schemes. | 271 |
| abstract_inverted_index.setting, | 88, 103 |
| abstract_inverted_index.tolerate | 135 |
| abstract_inverted_index.whereas, | 96 |
| abstract_inverted_index.(storage, | 190 |
| abstract_inverted_index.Byzantine | 8 |
| abstract_inverted_index.constant} | 206 |
| abstract_inverted_index.decoding. | 177 |
| abstract_inverted_index.different | 94 |
| abstract_inverted_index.efficient | 173 |
| abstract_inverted_index.iterative | 61 |
| abstract_inverted_index.machines, | 20 |
| abstract_inverted_index.parameter | 110 |
| abstract_inverted_index.primarily | 57 |
| abstract_inverted_index.programs, | 38 |
| abstract_inverted_index.streaming | 251 |
| abstract_inverted_index.threshold | 185 |
| abstract_inverted_index.trade-off | 181 |
| abstract_inverted_index.typically | 83 |
| abstract_inverted_index.Coordinate | 68 |
| abstract_inverted_index.algorithms | 219 |
| abstract_inverted_index.correction | 125 |
| abstract_inverted_index.corruption | 184 |
| abstract_inverted_index.designated | 41 |
| abstract_inverted_index.knowledge, | 230 |
| abstract_inverted_index.resources, | 210 |
| abstract_inverted_index.stochastic | 255 |
| abstract_inverted_index.adversarial | 131, 223, 241 |
| abstract_inverted_index.algorithms. | 80 |
| abstract_inverted_index.algorithms: | 62 |
| abstract_inverted_index.arbitrarily | 33 |
| abstract_inverted_index.compromised | 28 |
| abstract_inverted_index.computation | 14 |
| abstract_inverted_index.demonstrate | 179 |
| abstract_inverted_index.distributed | 2, 16, 217 |
| abstract_inverted_index.efficiently | 247 |
| abstract_inverted_index.generalized | 50 |
| abstract_inverted_index.guarantees, | 150 |
| abstract_inverted_index.iteratively | 44 |
| abstract_inverted_index.partitioned | 92, 107 |
| abstract_inverted_index.probability | 158 |
| abstract_inverted_index.protection. | 224 |
| abstract_inverted_index.adversaries, | 9 |
| abstract_inverted_index.complexity). | 194 |
| abstract_inverted_index.distribution | 159 |
| abstract_inverted_index.experimental | 262 |
| abstract_inverted_index.optimization | 3 |
| abstract_inverted_index.requirements | 189 |
| abstract_inverted_index.communication | 193 |
| abstract_inverted_index.data-parallel | 87 |
| abstract_inverted_index.deterministic | 149 |
| abstract_inverted_index.pre-specified | 37 |
| abstract_inverted_index.computational, | 191 |
| abstract_inverted_index.collaboratively | 31 |
| abstract_inverted_index.computationally | 172 |
| abstract_inverted_index.model/parameter | 47 |
| abstract_inverted_index.model-parallelism | 102 |
| abstract_inverted_index.$t\leq\frac{m}{3}$, | 199 |
| abstract_inverted_index.information-theoretically | 145 |
| abstract_inverted_index.\lfloor\frac{m-1}{2}\rfloor$ | 139 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.75406617 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |