Data from Comparing the Metagenomic Performance of Stools Collected from Custom Cards and 95% Ethanol in Epidemiologic Studies Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1158/1055-9965.c.7960531
Background:Stool cards have been used for microbiome assessment in epidemiologic studies.Methods:We compared shotgun metagenomic sequencing from 32 participants who self-collected stool samples from the same bowel movement using a custom stool card versus a collection tube with 95% ethanol fixative in the Nurses’ Health Study II. We evaluated the agreement between methods at both the whole-community and individual species levels. To contextualize the comparison for disease association studies, we assessed the performance of the two collection methods for differentiating colorectal cancer–associated taxa.Results:Overall, metagenomes from cards and 95% ethanol were highly correlated within individuals. No difference was found in α diversity and only ∼1% of variation in β diversity was explained by the collection method. At the species level, although the relative abundances were highly correlated between card and ethanol sample pairs (Spearman rho = 0.96), 10 (of 239) species showed a differential abundance in paired samples, including overrepresentation of Escherichia coli and underrepresentation of three Streptococcus species in cards compared with ethanol. Among a set of 99 colorectal cancer–associated species, four showed differential abundances between collection methods; however, this number was consistent with that expected by chance.Conclusions:Metagenomic sequencing using stool samples self-collected using stool cards or 95% ethanol yielded largely consistent results although differential abundances were observed for a small number of individual species.Impact:Stool cards can be a cost-effective alternative to collect stool samples for metagenomic sequencing in epidemiologic studies but warrant additional considerations for data analysis.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1158/1055-9965.c.7960531
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412843343
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412843343Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1158/1055-9965.c.7960531Digital Object Identifier
- Title
-
Data from Comparing the Metagenomic Performance of Stools Collected from Custom Cards and 95% Ethanol in Epidemiologic StudiesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-01Full publication date if available
- Authors
-
Thomas Kuntz, Ling Liu, Kai Wang, Christine Everett, A. Heather Eliassen, Walter C. Willett, Rashmi Sinha, Andrew T. Chan, Eric B. Rimm, Wendy S. Garrett, Nicola Segata, Gianmarco Piccinno, Curtis Huttenhower, Xochitl C. Morgan, Mingyang SongList of authors in order
- Landing page
-
https://doi.org/10.1158/1055-9965.c.7960531Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1158/1055-9965.c.7960531Direct OA link when available
- Concepts
-
Metagenomics, Information retrieval, Computer science, Data science, Statistics, Data mining, Biology, Mathematics, Genetics, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412843343 |
|---|---|
| doi | https://doi.org/10.1158/1055-9965.c.7960531 |
| ids.doi | https://doi.org/10.1158/1055-9965.c.7960531 |
| ids.openalex | https://openalex.org/W4412843343 |
| fwci | 0.0 |
| type | preprint |
| title | Data from Comparing the Metagenomic Performance of Stools Collected from Custom Cards and 95% Ethanol in Epidemiologic Studies |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10066 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gut microbiota and health |
| topics[1].id | https://openalex.org/T10552 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9473999738693237 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2730 |
| topics[1].subfield.display_name | Oncology |
| topics[1].display_name | Colorectal Cancer Screening and Detection |
| topics[2].id | https://openalex.org/T10582 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9463000297546387 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2739 |
| topics[2].subfield.display_name | Public Health, Environmental and Occupational Health |
| topics[2].display_name | Ethics in Clinical Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C15151743 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8532252311706543 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q903778 |
| concepts[0].display_name | Metagenomics |
| concepts[1].id | https://openalex.org/C23123220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.3878698945045471 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[1].display_name | Information retrieval |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.37723278999328613 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3482820391654968 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.34116482734680176 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32377880811691284 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3081359565258026 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.24409401416778564 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C54355233 |
| concepts[8].level | 1 |
| concepts[8].score | 0.11093184351921082 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[8].display_name | Genetics |
| concepts[9].id | https://openalex.org/C104317684 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[9].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/metagenomics |
| keywords[0].score | 0.8532252311706543 |
| keywords[0].display_name | Metagenomics |
| keywords[1].id | https://openalex.org/keywords/information-retrieval |
| keywords[1].score | 0.3878698945045471 |
| keywords[1].display_name | Information retrieval |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.37723278999328613 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.3482820391654968 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.34116482734680176 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.32377880811691284 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.3081359565258026 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.24409401416778564 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/genetics |
| keywords[8].score | 0.11093184351921082 |
| keywords[8].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1158/1055-9965.c.7960531 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1158/1055-9965.c.7960531 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5064503592 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0823-0340 |
| authorships[0].author.display_name | Thomas Kuntz |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thomas M. Kuntz |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5112934926 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-0781-8718 |
| authorships[1].author.display_name | Ling Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ling Liu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100437032 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5614-5618 |
| authorships[2].author.display_name | Kai Wang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kai Wang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5117726278 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Christine Everett |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Christine Everett |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5014551852 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3961-6609 |
| authorships[4].author.display_name | A. Heather Eliassen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | A. Heather Eliassen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5083991449 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1458-7597 |
| authorships[5].author.display_name | Walter C. Willett |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Walter C. Willett |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5084125220 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2466-7462 |
| authorships[6].author.display_name | Rashmi Sinha |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Rashmi Sinha |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5068835941 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-7284-6767 |
| authorships[7].author.display_name | Andrew T. Chan |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Andrew T. Chan |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5054114697 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1402-7250 |
| authorships[8].author.display_name | Eric B. Rimm |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Eric B. Rimm |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5091604970 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-5092-0150 |
| authorships[9].author.display_name | Wendy S. Garrett |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Wendy S. Garrett |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5068576885 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-1583-5794 |
| authorships[10].author.display_name | Nicola Segata |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Nicola Segata |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5008006450 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-1947-1817 |
| authorships[11].author.display_name | Gianmarco Piccinno |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Gianmarco Piccinno |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5008844345 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-1110-0096 |
| authorships[12].author.display_name | Curtis Huttenhower |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Curtis Huttenhower |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5001974222 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6264-6961 |
| authorships[13].author.display_name | Xochitl C. Morgan |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Xochitl Morgan |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5017604004 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-1324-0316 |
| authorships[14].author.display_name | Mingyang Song |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Mingyang Song |
| authorships[14].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1158/1055-9965.c.7960531 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data from Comparing the Metagenomic Performance of Stools Collected from Custom Cards and 95% Ethanol in Epidemiologic Studies |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10066 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gut microbiota and health |
| related_works | https://openalex.org/W638577851, https://openalex.org/W2968354375, https://openalex.org/W2359440920, https://openalex.org/W2889550857, https://openalex.org/W3013372948, https://openalex.org/W3135997498, https://openalex.org/W4242417330, https://openalex.org/W4388282505, https://openalex.org/W3198631238, https://openalex.org/W4255657129 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1158/1055-9965.c.7960531 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1158/1055-9965.c.7960531 |
| primary_location.id | doi:10.1158/1055-9965.c.7960531 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1158/1055-9965.c.7960531 |
| publication_date | 2025-08-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 133 |
| abstract_inverted_index.a | 28, 33, 140, 163, 208, 217 |
| abstract_inverted_index.10 | 135 |
| abstract_inverted_index.32 | 16 |
| abstract_inverted_index.99 | 166 |
| abstract_inverted_index.At | 114 |
| abstract_inverted_index.No | 93 |
| abstract_inverted_index.To | 60 |
| abstract_inverted_index.We | 46 |
| abstract_inverted_index.at | 52 |
| abstract_inverted_index.be | 216 |
| abstract_inverted_index.by | 110, 185 |
| abstract_inverted_index.in | 8, 40, 97, 105, 143, 157, 227 |
| abstract_inverted_index.of | 72, 103, 148, 153, 165, 211 |
| abstract_inverted_index.or | 195 |
| abstract_inverted_index.to | 220 |
| abstract_inverted_index.we | 68 |
| abstract_inverted_index.α | 98 |
| abstract_inverted_index.β | 106 |
| abstract_inverted_index.(of | 136 |
| abstract_inverted_index.95% | 37, 86, 196 |
| abstract_inverted_index.II. | 45 |
| abstract_inverted_index.and | 56, 85, 100, 127, 151 |
| abstract_inverted_index.but | 230 |
| abstract_inverted_index.can | 215 |
| abstract_inverted_index.for | 5, 64, 77, 207, 224, 234 |
| abstract_inverted_index.rho | 132 |
| abstract_inverted_index.set | 164 |
| abstract_inverted_index.the | 23, 41, 48, 54, 62, 70, 73, 111, 115, 119 |
| abstract_inverted_index.two | 74 |
| abstract_inverted_index.was | 95, 108, 180 |
| abstract_inverted_index.who | 18 |
| abstract_inverted_index.239) | 137 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.both | 53 |
| abstract_inverted_index.card | 31, 126 |
| abstract_inverted_index.data | 235 |
| abstract_inverted_index.four | 170 |
| abstract_inverted_index.from | 15, 22, 83 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.only | 101 |
| abstract_inverted_index.same | 24 |
| abstract_inverted_index.that | 183 |
| abstract_inverted_index.this | 178 |
| abstract_inverted_index.tube | 35 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.were | 88, 122, 205 |
| abstract_inverted_index.with | 36, 160, 182 |
| abstract_inverted_index.Among | 162 |
| abstract_inverted_index.Study | 44 |
| abstract_inverted_index.bowel | 25 |
| abstract_inverted_index.cards | 1, 84, 158, 194, 214 |
| abstract_inverted_index.found | 96 |
| abstract_inverted_index.pairs | 130 |
| abstract_inverted_index.small | 209 |
| abstract_inverted_index.stool | 20, 30, 189, 193, 222 |
| abstract_inverted_index.three | 154 |
| abstract_inverted_index.using | 27, 188, 192 |
| abstract_inverted_index.∼1% | 102 |
| abstract_inverted_index.0.96), | 134 |
| abstract_inverted_index.Health | 43 |
| abstract_inverted_index.custom | 29 |
| abstract_inverted_index.highly | 89, 123 |
| abstract_inverted_index.level, | 117 |
| abstract_inverted_index.number | 179, 210 |
| abstract_inverted_index.paired | 144 |
| abstract_inverted_index.sample | 129 |
| abstract_inverted_index.showed | 139, 171 |
| abstract_inverted_index.versus | 32 |
| abstract_inverted_index.within | 91 |
| abstract_inverted_index.between | 50, 125, 174 |
| abstract_inverted_index.collect | 221 |
| abstract_inverted_index.disease | 65 |
| abstract_inverted_index.ethanol | 38, 87, 128, 197 |
| abstract_inverted_index.largely | 199 |
| abstract_inverted_index.levels. | 59 |
| abstract_inverted_index.method. | 113 |
| abstract_inverted_index.methods | 51, 76 |
| abstract_inverted_index.results | 201 |
| abstract_inverted_index.samples | 21, 190, 223 |
| abstract_inverted_index.shotgun | 12 |
| abstract_inverted_index.species | 58, 116, 138, 156 |
| abstract_inverted_index.studies | 229 |
| abstract_inverted_index.warrant | 231 |
| abstract_inverted_index.yielded | 198 |
| abstract_inverted_index.although | 118, 202 |
| abstract_inverted_index.assessed | 69 |
| abstract_inverted_index.compared | 11, 159 |
| abstract_inverted_index.ethanol. | 161 |
| abstract_inverted_index.expected | 184 |
| abstract_inverted_index.fixative | 39 |
| abstract_inverted_index.however, | 177 |
| abstract_inverted_index.methods; | 176 |
| abstract_inverted_index.movement | 26 |
| abstract_inverted_index.observed | 206 |
| abstract_inverted_index.relative | 120 |
| abstract_inverted_index.samples, | 145 |
| abstract_inverted_index.species, | 169 |
| abstract_inverted_index.studies, | 67 |
| abstract_inverted_index.(Spearman | 131 |
| abstract_inverted_index.Nurses’ | 42 |
| abstract_inverted_index.abundance | 142 |
| abstract_inverted_index.agreement | 49 |
| abstract_inverted_index.diversity | 99, 107 |
| abstract_inverted_index.evaluated | 47 |
| abstract_inverted_index.explained | 109 |
| abstract_inverted_index.including | 146 |
| abstract_inverted_index.variation | 104 |
| abstract_inverted_index.abundances | 121, 173, 204 |
| abstract_inverted_index.additional | 232 |
| abstract_inverted_index.assessment | 7 |
| abstract_inverted_index.collection | 34, 75, 112, 175 |
| abstract_inverted_index.colorectal | 79, 167 |
| abstract_inverted_index.comparison | 63 |
| abstract_inverted_index.consistent | 181, 200 |
| abstract_inverted_index.correlated | 90, 124 |
| abstract_inverted_index.difference | 94 |
| abstract_inverted_index.individual | 57, 212 |
| abstract_inverted_index.microbiome | 6 |
| abstract_inverted_index.sequencing | 14, 187, 226 |
| abstract_inverted_index.alternative | 219 |
| abstract_inverted_index.association | 66 |
| abstract_inverted_index.metagenomes | 82 |
| abstract_inverted_index.metagenomic | 13, 225 |
| abstract_inverted_index.performance | 71 |
| abstract_inverted_index.differential | 141, 172, 203 |
| abstract_inverted_index.individuals. | 92 |
| abstract_inverted_index.participants | 17 |
| abstract_inverted_index.contextualize | 61 |
| abstract_inverted_index.epidemiologic | 9, 228 |
| abstract_inverted_index.coli</i> | 150 |
| abstract_inverted_index.considerations | 233 |
| abstract_inverted_index.cost-effective | 218 |
| abstract_inverted_index.self-collected | 19, 191 |
| abstract_inverted_index.differentiating | 78 |
| abstract_inverted_index.whole-community | 55 |
| abstract_inverted_index.overrepresentation | 147 |
| abstract_inverted_index.cancer–associated | 80, 168 |
| abstract_inverted_index.underrepresentation | 152 |
| abstract_inverted_index.<i>Escherichia | 149 |
| abstract_inverted_index.analysis.</p></div> | 236 |
| abstract_inverted_index.<i>Streptococcus</i> | 155 |
| abstract_inverted_index.studies.</p>Methods:<p>We | 10 |
| abstract_inverted_index.species.</p>Impact:<p>Stool | 213 |
| abstract_inverted_index.taxa.</p>Results:<p>Overall, | 81 |
| abstract_inverted_index.<div>AbstractBackground:<p>Stool | 0 |
| abstract_inverted_index.chance.</p>Conclusions:<p>Metagenomic | 186 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 15 |
| citation_normalized_percentile.value | 0.30204809 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |