Data fusion-based improvements in empirical regression and machine learning for global daily ∼ 8 km resolution sea surface nitrate estimation and interpretation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.jag.2025.104800
Assessing sea surface nitrate (SSN) concentrations and dynamics is crucial for understanding marine ecosystem health, yet optical remote sensing of SSN remains challenging because of the lack of distinct spectral features. While various global-scale SSN regression and machine learning algorithms based on SSN-environment variable relationships have been developed, the prediction accuracy and spatiotemporal resolution of their applications continue to face limitations. Additionally, there has been relatively little reporting on the interannual variability of global SSN in previous studies. Here we aim to enhance the accuracy and spatial resolution of SSN retrievals by developing improved regression and machine learning models, enabling the generation of global daily ∼ 8 km SSN products from satellite and model data. To construct the empirical regression models, the global ocean was divided into five regions on the basis of the relationship between sea surface temperature (SST) and SSN: 80° S to 40° N, the North Pacific, the North Atlantic, the Arabian Sea, and the eastern equatorial Pacific. After adding SSN-related physical variables, high-accuracy regional empirical models are developed, with root mean square deviations (RMSDs) of 1.641, 2.701, 1.221, 1.298, and 2.379 μmol/kg for the studied regions. For the machine learning models, seven algorithms, namely, extremely randomized trees (ET), multilayer perceptron (MLP), stacking random forest (SRF), Gaussian process regression (GPR), support vector machine (SVM), gradient boosting decision tree (GBDT), and extreme gradient boosting (XGBoost) algorithms, were tested. After modeling, validation, and extensive tests using independent cruise dataset, the XGBoost model outperformed others (RMSD = 1.189 μmol/kg) and bypassed the need for regional segmentation. Mechanistic analysis revealed the driving variables influencing SSN in both regional empirical and XGBoost models, improving interpretability. Comparative validation confirmed that our models surpass traditional approaches in accuracy and applicability, demonstrating their potential to advance global SSN monitoring. Using XGBoost-derived products, we find a slight weak decreasing trend in SSN over 23 years. The proposed robust and explainable SSN retrieval models have the potential to assist in ocean environmental management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jag.2025.104800
- OA Status
- gold
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413324458
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413324458Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jag.2025.104800Digital Object Identifier
- Title
-
Data fusion-based improvements in empirical regression and machine learning for global daily ∼ 8 km resolution sea surface nitrate estimation and interpretationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-19Full publication date if available
- Authors
-
Aifen Zhong, Difeng Wang, Fang Gong, Jingjing Huang, Zhuoqi Zheng, Xianqiang He, Qing Zhang, Qiankun ZhuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jag.2025.104800Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jag.2025.104800Direct OA link when available
- Concepts
-
Interpretation (philosophy), Regression, Geography, Estimation, Sensor fusion, Cartography, Artificial intelligence, Statistics, Remote sensing, Environmental science, Computer science, Mathematics, Engineering, Systems engineering, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413324458 |
|---|---|
| doi | https://doi.org/10.1016/j.jag.2025.104800 |
| ids.doi | https://doi.org/10.1016/j.jag.2025.104800 |
| ids.openalex | https://openalex.org/W4413324458 |
| fwci | 0.0 |
| type | article |
| title | Data fusion-based improvements in empirical regression and machine learning for global daily ∼ 8 km resolution sea surface nitrate estimation and interpretation |
| awards[0].id | https://openalex.org/G4052396883 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 41476157 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G8358441221 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2018YFB0505005 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| awards[2].id | https://openalex.org/G8634505091 |
| awards[2].funder_id | https://openalex.org/F4320335777 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2017YFC1405300 |
| awards[2].funder_display_name | National Key Research and Development Program of China |
| awards[3].id | https://openalex.org/G6016814255 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 42476174 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 143 |
| biblio.last_page | 104800 |
| biblio.first_page | 104800 |
| topics[0].id | https://openalex.org/T10032 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9879999756813049 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1910 |
| topics[0].subfield.display_name | Oceanography |
| topics[0].display_name | Marine and coastal ecosystems |
| topics[1].id | https://openalex.org/T14249 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9652000069618225 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2311 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Water Quality Monitoring and Analysis |
| topics[2].id | https://openalex.org/T14427 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9348999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1907 |
| topics[2].subfield.display_name | Geology |
| topics[2].display_name | Environmental Monitoring and Data Management |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2250 |
| apc_list.currency | USD |
| apc_list.value_usd | 2250 |
| apc_paid.value | 2250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2250 |
| concepts[0].id | https://openalex.org/C527412718 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6563399434089661 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q855395 |
| concepts[0].display_name | Interpretation (philosophy) |
| concepts[1].id | https://openalex.org/C83546350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5845683217048645 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[1].display_name | Regression |
| concepts[2].id | https://openalex.org/C205649164 |
| concepts[2].level | 0 |
| concepts[2].score | 0.524974524974823 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[2].display_name | Geography |
| concepts[3].id | https://openalex.org/C96250715 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5014567375183105 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[3].display_name | Estimation |
| concepts[4].id | https://openalex.org/C33954974 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4659384787082672 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[4].display_name | Sensor fusion |
| concepts[5].id | https://openalex.org/C58640448 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4000563323497772 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[5].display_name | Cartography |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3675105571746826 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36277541518211365 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34812211990356445 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C39432304 |
| concepts[9].level | 0 |
| concepts[9].score | 0.33104878664016724 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[9].display_name | Environmental science |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3180314004421234 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.2779186964035034 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14563506841659546 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C201995342 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[13].display_name | Systems engineering |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/interpretation |
| keywords[0].score | 0.6563399434089661 |
| keywords[0].display_name | Interpretation (philosophy) |
| keywords[1].id | https://openalex.org/keywords/regression |
| keywords[1].score | 0.5845683217048645 |
| keywords[1].display_name | Regression |
| keywords[2].id | https://openalex.org/keywords/geography |
| keywords[2].score | 0.524974524974823 |
| keywords[2].display_name | Geography |
| keywords[3].id | https://openalex.org/keywords/estimation |
| keywords[3].score | 0.5014567375183105 |
| keywords[3].display_name | Estimation |
| keywords[4].id | https://openalex.org/keywords/sensor-fusion |
| keywords[4].score | 0.4659384787082672 |
| keywords[4].display_name | Sensor fusion |
| keywords[5].id | https://openalex.org/keywords/cartography |
| keywords[5].score | 0.4000563323497772 |
| keywords[5].display_name | Cartography |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3675105571746826 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.36277541518211365 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.34812211990356445 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/environmental-science |
| keywords[9].score | 0.33104878664016724 |
| keywords[9].display_name | Environmental science |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.3180314004421234 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.2779186964035034 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.14563506841659546 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.jag.2025.104800 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179989 |
| locations[0].source.issn | 1569-8432, 1872-826X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1569-8432 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jag.2025.104800 |
| locations[1].id | pmh:oai:doaj.org/article:a05e68421f284ec4abdcafdbdc8b6a77 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Applied Earth Observations and Geoinformation, Vol 143, Iss , Pp 104800- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/a05e68421f284ec4abdcafdbdc8b6a77 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5055965290 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Aifen Zhong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Aifen Zhong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5053182622 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7747-3082 |
| authorships[1].author.display_name | Difeng Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Difeng Wang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002577814 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Fang Gong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fang Gong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5038996953 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9789-8560 |
| authorships[3].author.display_name | Jingjing Huang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jingjing Huang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5058884516 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1158-2790 |
| authorships[4].author.display_name | Zhuoqi Zheng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhuoqi Zheng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5037623697 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7474-6778 |
| authorships[5].author.display_name | Xianqiang He |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xianqiang He |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5048063708 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2940-7440 |
| authorships[6].author.display_name | Qing Zhang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Qing Zhang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5000110514 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6898-8663 |
| authorships[7].author.display_name | Qiankun Zhu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Qiankun Zhu |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jag.2025.104800 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data fusion-based improvements in empirical regression and machine learning for global daily ∼ 8 km resolution sea surface nitrate estimation and interpretation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10032 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9879999756813049 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1910 |
| primary_topic.subfield.display_name | Oceanography |
| primary_topic.display_name | Marine and coastal ecosystems |
| related_works | https://openalex.org/W4313320911, https://openalex.org/W4327743144, https://openalex.org/W4245077728, https://openalex.org/W2607424049, https://openalex.org/W4390922876, https://openalex.org/W3183204001, https://openalex.org/W4206302830, https://openalex.org/W2185941092, https://openalex.org/W4386782890, https://openalex.org/W3210948575 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jag.2025.104800 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179989 |
| best_oa_location.source.issn | 1569-8432, 1872-826X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1569-8432 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jag.2025.104800 |
| primary_location.id | doi:10.1016/j.jag.2025.104800 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179989 |
| primary_location.source.issn | 1569-8432, 1872-826X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1569-8432 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jag.2025.104800 |
| publication_date | 2025-08-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2166077285, https://openalex.org/W2088665921, https://openalex.org/W6672057158, https://openalex.org/W2165806421, https://openalex.org/W2623613475, https://openalex.org/W3195731032, https://openalex.org/W282346625, https://openalex.org/W2058567787, https://openalex.org/W2109172150, https://openalex.org/W4385145379, https://openalex.org/W3122330846, https://openalex.org/W2039257462, https://openalex.org/W2121675877, https://openalex.org/W2163178565, https://openalex.org/W2150911542, https://openalex.org/W1998857608, https://openalex.org/W2155033464, https://openalex.org/W2018459257, https://openalex.org/W2007575888, https://openalex.org/W6854710682, https://openalex.org/W831269995, https://openalex.org/W2887427591, https://openalex.org/W1965960318, https://openalex.org/W2002333071, https://openalex.org/W1964172124, https://openalex.org/W2617448796, https://openalex.org/W2618851150, https://openalex.org/W6779711254, https://openalex.org/W3008785850, https://openalex.org/W2028722328, https://openalex.org/W6672187613, https://openalex.org/W6660521474, https://openalex.org/W2791516065, https://openalex.org/W6776087425, https://openalex.org/W2064929808, https://openalex.org/W2080273764, https://openalex.org/W1978649884, https://openalex.org/W2083193555, https://openalex.org/W4404206235, https://openalex.org/W4389832125, https://openalex.org/W1989042161, https://openalex.org/W3130448211, https://openalex.org/W1967785373, https://openalex.org/W2047566741, https://openalex.org/W1982108804, https://openalex.org/W6869818734, https://openalex.org/W6657891646, https://openalex.org/W2919363769, https://openalex.org/W2002223597, https://openalex.org/W1979968585, https://openalex.org/W1931881894, https://openalex.org/W2902418124, https://openalex.org/W2092727101, https://openalex.org/W2125736706, https://openalex.org/W2983898076, https://openalex.org/W3110971880, https://openalex.org/W6871497950, https://openalex.org/W4394903918, https://openalex.org/W3020841357, https://openalex.org/W94627035, https://openalex.org/W4400052089, https://openalex.org/W2163263379, https://openalex.org/W4401476194, https://openalex.org/W2039511898, https://openalex.org/W4383890570, https://openalex.org/W2086933696, https://openalex.org/W3035353528, https://openalex.org/W2086312823, https://openalex.org/W2029538475 |
| referenced_works_count | 69 |
| abstract_inverted_index.8 | 106 |
| abstract_inverted_index.= | 246 |
| abstract_inverted_index.S | 143 |
| abstract_inverted_index.a | 299 |
| abstract_inverted_index.23 | 307 |
| abstract_inverted_index.N, | 146 |
| abstract_inverted_index.To | 115 |
| abstract_inverted_index.by | 91 |
| abstract_inverted_index.in | 75, 264, 282, 304, 322 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.km | 107 |
| abstract_inverted_index.of | 19, 24, 27, 54, 72, 88, 102, 132, 178 |
| abstract_inverted_index.on | 41, 68, 129 |
| abstract_inverted_index.to | 58, 81, 144, 289, 320 |
| abstract_inverted_index.we | 79, 297 |
| abstract_inverted_index.For | 190 |
| abstract_inverted_index.SSN | 20, 34, 74, 89, 108, 263, 292, 305, 314 |
| abstract_inverted_index.The | 309 |
| abstract_inverted_index.aim | 80 |
| abstract_inverted_index.and | 6, 36, 51, 85, 95, 112, 140, 156, 183, 222, 233, 249, 268, 284, 312 |
| abstract_inverted_index.are | 170 |
| abstract_inverted_index.for | 10, 186, 253 |
| abstract_inverted_index.has | 63 |
| abstract_inverted_index.our | 277 |
| abstract_inverted_index.sea | 1, 136 |
| abstract_inverted_index.the | 25, 48, 69, 83, 100, 117, 121, 130, 133, 147, 150, 153, 157, 187, 191, 240, 251, 259, 318 |
| abstract_inverted_index.was | 124 |
| abstract_inverted_index.yet | 15 |
| abstract_inverted_index.∼ | 105 |
| abstract_inverted_index.40° | 145 |
| abstract_inverted_index.80° | 142 |
| abstract_inverted_index.Here | 78 |
| abstract_inverted_index.SSN: | 141 |
| abstract_inverted_index.Sea, | 155 |
| abstract_inverted_index.been | 46, 64 |
| abstract_inverted_index.both | 265 |
| abstract_inverted_index.face | 59 |
| abstract_inverted_index.find | 298 |
| abstract_inverted_index.five | 127 |
| abstract_inverted_index.from | 110 |
| abstract_inverted_index.have | 45, 317 |
| abstract_inverted_index.into | 126 |
| abstract_inverted_index.lack | 26 |
| abstract_inverted_index.mean | 174 |
| abstract_inverted_index.need | 252 |
| abstract_inverted_index.over | 306 |
| abstract_inverted_index.root | 173 |
| abstract_inverted_index.that | 276 |
| abstract_inverted_index.tree | 220 |
| abstract_inverted_index.weak | 301 |
| abstract_inverted_index.were | 228 |
| abstract_inverted_index.with | 172 |
| abstract_inverted_index.(ET), | 201 |
| abstract_inverted_index.(RMSD | 245 |
| abstract_inverted_index.(SSN) | 4 |
| abstract_inverted_index.(SST) | 139 |
| abstract_inverted_index.1.189 | 247 |
| abstract_inverted_index.2.379 | 184 |
| abstract_inverted_index.After | 161, 230 |
| abstract_inverted_index.North | 148, 151 |
| abstract_inverted_index.Using | 294 |
| abstract_inverted_index.While | 31 |
| abstract_inverted_index.based | 40 |
| abstract_inverted_index.basis | 131 |
| abstract_inverted_index.daily | 104 |
| abstract_inverted_index.data. | 114 |
| abstract_inverted_index.model | 113, 242 |
| abstract_inverted_index.ocean | 123, 323 |
| abstract_inverted_index.seven | 195 |
| abstract_inverted_index.tests | 235 |
| abstract_inverted_index.their | 55, 287 |
| abstract_inverted_index.there | 62 |
| abstract_inverted_index.trees | 200 |
| abstract_inverted_index.trend | 303 |
| abstract_inverted_index.using | 236 |
| abstract_inverted_index.(GPR), | 212 |
| abstract_inverted_index.(MLP), | 204 |
| abstract_inverted_index.(SRF), | 208 |
| abstract_inverted_index.(SVM), | 216 |
| abstract_inverted_index.1.221, | 181 |
| abstract_inverted_index.1.298, | 182 |
| abstract_inverted_index.1.641, | 179 |
| abstract_inverted_index.2.701, | 180 |
| abstract_inverted_index.adding | 162 |
| abstract_inverted_index.assist | 321 |
| abstract_inverted_index.cruise | 238 |
| abstract_inverted_index.forest | 207 |
| abstract_inverted_index.global | 73, 103, 122, 291 |
| abstract_inverted_index.little | 66 |
| abstract_inverted_index.marine | 12 |
| abstract_inverted_index.models | 169, 278, 316 |
| abstract_inverted_index.others | 244 |
| abstract_inverted_index.random | 206 |
| abstract_inverted_index.remote | 17 |
| abstract_inverted_index.robust | 311 |
| abstract_inverted_index.slight | 300 |
| abstract_inverted_index.square | 175 |
| abstract_inverted_index.vector | 214 |
| abstract_inverted_index.years. | 308 |
| abstract_inverted_index.(GBDT), | 221 |
| abstract_inverted_index.(RMSDs) | 177 |
| abstract_inverted_index.Arabian | 154 |
| abstract_inverted_index.XGBoost | 241, 269 |
| abstract_inverted_index.advance | 290 |
| abstract_inverted_index.because | 23 |
| abstract_inverted_index.between | 135 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.divided | 125 |
| abstract_inverted_index.driving | 260 |
| abstract_inverted_index.eastern | 158 |
| abstract_inverted_index.enhance | 82 |
| abstract_inverted_index.extreme | 223 |
| abstract_inverted_index.health, | 14 |
| abstract_inverted_index.machine | 37, 96, 192, 215 |
| abstract_inverted_index.models, | 98, 120, 194, 270 |
| abstract_inverted_index.namely, | 197 |
| abstract_inverted_index.nitrate | 3 |
| abstract_inverted_index.optical | 16 |
| abstract_inverted_index.process | 210 |
| abstract_inverted_index.regions | 128 |
| abstract_inverted_index.remains | 21 |
| abstract_inverted_index.sensing | 18 |
| abstract_inverted_index.spatial | 86 |
| abstract_inverted_index.studied | 188 |
| abstract_inverted_index.support | 213 |
| abstract_inverted_index.surface | 2, 137 |
| abstract_inverted_index.surpass | 279 |
| abstract_inverted_index.tested. | 229 |
| abstract_inverted_index.various | 32 |
| abstract_inverted_index.Gaussian | 209 |
| abstract_inverted_index.Pacific, | 149 |
| abstract_inverted_index.Pacific. | 160 |
| abstract_inverted_index.accuracy | 50, 84, 283 |
| abstract_inverted_index.analysis | 257 |
| abstract_inverted_index.boosting | 218, 225 |
| abstract_inverted_index.bypassed | 250 |
| abstract_inverted_index.continue | 57 |
| abstract_inverted_index.dataset, | 239 |
| abstract_inverted_index.decision | 219 |
| abstract_inverted_index.distinct | 28 |
| abstract_inverted_index.dynamics | 7 |
| abstract_inverted_index.enabling | 99 |
| abstract_inverted_index.gradient | 217, 224 |
| abstract_inverted_index.improved | 93 |
| abstract_inverted_index.learning | 38, 97, 193 |
| abstract_inverted_index.physical | 164 |
| abstract_inverted_index.previous | 76 |
| abstract_inverted_index.products | 109 |
| abstract_inverted_index.proposed | 310 |
| abstract_inverted_index.regional | 167, 254, 266 |
| abstract_inverted_index.regions. | 189 |
| abstract_inverted_index.revealed | 258 |
| abstract_inverted_index.spectral | 29 |
| abstract_inverted_index.stacking | 205 |
| abstract_inverted_index.studies. | 77 |
| abstract_inverted_index.variable | 43 |
| abstract_inverted_index.μmol/kg | 185 |
| abstract_inverted_index.(XGBoost) | 226 |
| abstract_inverted_index.Assessing | 0 |
| abstract_inverted_index.Atlantic, | 152 |
| abstract_inverted_index.confirmed | 275 |
| abstract_inverted_index.construct | 116 |
| abstract_inverted_index.ecosystem | 13 |
| abstract_inverted_index.empirical | 118, 168, 267 |
| abstract_inverted_index.extensive | 234 |
| abstract_inverted_index.extremely | 198 |
| abstract_inverted_index.features. | 30 |
| abstract_inverted_index.improving | 271 |
| abstract_inverted_index.modeling, | 231 |
| abstract_inverted_index.potential | 288, 319 |
| abstract_inverted_index.products, | 296 |
| abstract_inverted_index.reporting | 67 |
| abstract_inverted_index.retrieval | 315 |
| abstract_inverted_index.satellite | 111 |
| abstract_inverted_index.variables | 261 |
| abstract_inverted_index.μmol/kg) | 248 |
| abstract_inverted_index.algorithms | 39 |
| abstract_inverted_index.approaches | 281 |
| abstract_inverted_index.decreasing | 302 |
| abstract_inverted_index.developed, | 47, 171 |
| abstract_inverted_index.developing | 92 |
| abstract_inverted_index.deviations | 176 |
| abstract_inverted_index.equatorial | 159 |
| abstract_inverted_index.generation | 101 |
| abstract_inverted_index.multilayer | 202 |
| abstract_inverted_index.perceptron | 203 |
| abstract_inverted_index.prediction | 49 |
| abstract_inverted_index.randomized | 199 |
| abstract_inverted_index.regression | 35, 94, 119, 211 |
| abstract_inverted_index.relatively | 65 |
| abstract_inverted_index.resolution | 53, 87 |
| abstract_inverted_index.retrievals | 90 |
| abstract_inverted_index.validation | 274 |
| abstract_inverted_index.variables, | 165 |
| abstract_inverted_index.Comparative | 273 |
| abstract_inverted_index.Mechanistic | 256 |
| abstract_inverted_index.SSN-related | 163 |
| abstract_inverted_index.algorithms, | 196, 227 |
| abstract_inverted_index.challenging | 22 |
| abstract_inverted_index.explainable | 313 |
| abstract_inverted_index.independent | 237 |
| abstract_inverted_index.influencing | 262 |
| abstract_inverted_index.interannual | 70 |
| abstract_inverted_index.management. | 325 |
| abstract_inverted_index.monitoring. | 293 |
| abstract_inverted_index.temperature | 138 |
| abstract_inverted_index.traditional | 280 |
| abstract_inverted_index.validation, | 232 |
| abstract_inverted_index.variability | 71 |
| abstract_inverted_index.applications | 56 |
| abstract_inverted_index.global-scale | 33 |
| abstract_inverted_index.limitations. | 60 |
| abstract_inverted_index.outperformed | 243 |
| abstract_inverted_index.relationship | 134 |
| abstract_inverted_index.Additionally, | 61 |
| abstract_inverted_index.demonstrating | 286 |
| abstract_inverted_index.environmental | 324 |
| abstract_inverted_index.high-accuracy | 166 |
| abstract_inverted_index.relationships | 44 |
| abstract_inverted_index.segmentation. | 255 |
| abstract_inverted_index.understanding | 11 |
| abstract_inverted_index.applicability, | 285 |
| abstract_inverted_index.concentrations | 5 |
| abstract_inverted_index.spatiotemporal | 52 |
| abstract_inverted_index.SSN-environment | 42 |
| abstract_inverted_index.XGBoost-derived | 295 |
| abstract_inverted_index.interpretability. | 272 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.35030399 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |