Data Games: A Game-Theoretic Approach to Swarm Robotic Data Collection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2303.03602
Fleets of networked autonomous vehicles (AVs) collect terabytes of sensory data, which is often transmitted to central servers (the ''cloud'') for training machine learning (ML) models. Ideally, these fleets should upload all their data, especially from rare operating contexts, in order to train robust ML models. However, this is infeasible due to prohibitive network bandwidth and data labeling costs. Instead, we propose a cooperative data sampling strategy where geo-distributed AVs collaborate to collect a diverse ML training dataset in the cloud. Since the AVs have a shared objective but minimal information about each other's local data distribution and perception model, we can naturally cast cooperative data collection as an $N$-player mathematical game. We show that our cooperative sampling strategy uses minimal information to converge to a centralized oracle policy with complete information about all AVs. Moreover, we theoretically characterize the performance benefits of our game-theoretic strategy compared to greedy sampling. Finally, we experimentally demonstrate that our method outperforms standard benchmarks by up to $21.9\%$ on 4 perception datasets, including for autonomous driving in adverse weather conditions. Crucially, our experimental results on real-world datasets closely align with our theoretical guarantees.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2303.03602
- https://arxiv.org/pdf/2303.03602
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323650598
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323650598Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2303.03602Digital Object Identifier
- Title
-
Data Games: A Game-Theoretic Approach to Swarm Robotic Data CollectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-07Full publication date if available
- Authors
-
Oguzhan Akcin, Po-han Li, Shubhankar Agarwal, Sandeep ChinchaliList of authors in order
- Landing page
-
https://arxiv.org/abs/2303.03602Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2303.03602Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2303.03602Direct OA link when available
- Concepts
-
Computer science, Oracle, Potential game, Upload, Cloud computing, Terabyte, Data collection, Bayesian game, Sampling (signal processing), Server, Game theory, Distributed computing, Nash equilibrium, Sequential game, Computer network, Mathematical optimization, Filter (signal processing), Statistics, Economics, Software engineering, Mathematics, Microeconomics, Operating system, Computer visionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323650598 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2303.03602 |
| ids.doi | https://doi.org/10.48550/arxiv.2303.03602 |
| ids.openalex | https://openalex.org/W4323650598 |
| fwci | |
| type | preprint |
| title | Data Games: A Game-Theoretic Approach to Swarm Robotic Data Collection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10249 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9911999702453613 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Distributed Control Multi-Agent Systems |
| topics[1].id | https://openalex.org/T13553 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9869999885559082 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Age of Information Optimization |
| topics[2].id | https://openalex.org/T10764 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9868000149726868 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8226320743560791 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C55166926 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7078894376754761 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2892946 |
| concepts[1].display_name | Oracle |
| concepts[2].id | https://openalex.org/C2778079155 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6760591268539429 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q288500 |
| concepts[2].display_name | Potential game |
| concepts[3].id | https://openalex.org/C71901391 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5969325304031372 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7126699 |
| concepts[3].display_name | Upload |
| concepts[4].id | https://openalex.org/C79974875 |
| concepts[4].level | 2 |
| concepts[4].score | 0.594237208366394 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[4].display_name | Cloud computing |
| concepts[5].id | https://openalex.org/C199683683 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44872137904167175 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8799 |
| concepts[5].display_name | Terabyte |
| concepts[6].id | https://openalex.org/C133462117 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4399501383304596 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[6].display_name | Data collection |
| concepts[7].id | https://openalex.org/C200594392 |
| concepts[7].level | 4 |
| concepts[7].score | 0.43645572662353516 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812529 |
| concepts[7].display_name | Bayesian game |
| concepts[8].id | https://openalex.org/C140779682 |
| concepts[8].level | 3 |
| concepts[8].score | 0.42641326785087585 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[8].display_name | Sampling (signal processing) |
| concepts[9].id | https://openalex.org/C93996380 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41642138361930847 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q44127 |
| concepts[9].display_name | Server |
| concepts[10].id | https://openalex.org/C177142836 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3743845224380493 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q44455 |
| concepts[10].display_name | Game theory |
| concepts[11].id | https://openalex.org/C120314980 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3413704037666321 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[11].display_name | Distributed computing |
| concepts[12].id | https://openalex.org/C46814582 |
| concepts[12].level | 2 |
| concepts[12].score | 0.28174999356269836 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q23389 |
| concepts[12].display_name | Nash equilibrium |
| concepts[13].id | https://openalex.org/C73795354 |
| concepts[13].level | 3 |
| concepts[13].score | 0.19028222560882568 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q287618 |
| concepts[13].display_name | Sequential game |
| concepts[14].id | https://openalex.org/C31258907 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15203776955604553 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[14].display_name | Computer network |
| concepts[15].id | https://openalex.org/C126255220 |
| concepts[15].level | 1 |
| concepts[15].score | 0.14700207114219666 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[15].display_name | Mathematical optimization |
| concepts[16].id | https://openalex.org/C106131492 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[16].display_name | Filter (signal processing) |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C115903868 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q80993 |
| concepts[19].display_name | Software engineering |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C175444787 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q39072 |
| concepts[21].display_name | Microeconomics |
| concepts[22].id | https://openalex.org/C111919701 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[22].display_name | Operating system |
| concepts[23].id | https://openalex.org/C31972630 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[23].display_name | Computer vision |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8226320743560791 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/oracle |
| keywords[1].score | 0.7078894376754761 |
| keywords[1].display_name | Oracle |
| keywords[2].id | https://openalex.org/keywords/potential-game |
| keywords[2].score | 0.6760591268539429 |
| keywords[2].display_name | Potential game |
| keywords[3].id | https://openalex.org/keywords/upload |
| keywords[3].score | 0.5969325304031372 |
| keywords[3].display_name | Upload |
| keywords[4].id | https://openalex.org/keywords/cloud-computing |
| keywords[4].score | 0.594237208366394 |
| keywords[4].display_name | Cloud computing |
| keywords[5].id | https://openalex.org/keywords/terabyte |
| keywords[5].score | 0.44872137904167175 |
| keywords[5].display_name | Terabyte |
| keywords[6].id | https://openalex.org/keywords/data-collection |
| keywords[6].score | 0.4399501383304596 |
| keywords[6].display_name | Data collection |
| keywords[7].id | https://openalex.org/keywords/bayesian-game |
| keywords[7].score | 0.43645572662353516 |
| keywords[7].display_name | Bayesian game |
| keywords[8].id | https://openalex.org/keywords/sampling |
| keywords[8].score | 0.42641326785087585 |
| keywords[8].display_name | Sampling (signal processing) |
| keywords[9].id | https://openalex.org/keywords/server |
| keywords[9].score | 0.41642138361930847 |
| keywords[9].display_name | Server |
| keywords[10].id | https://openalex.org/keywords/game-theory |
| keywords[10].score | 0.3743845224380493 |
| keywords[10].display_name | Game theory |
| keywords[11].id | https://openalex.org/keywords/distributed-computing |
| keywords[11].score | 0.3413704037666321 |
| keywords[11].display_name | Distributed computing |
| keywords[12].id | https://openalex.org/keywords/nash-equilibrium |
| keywords[12].score | 0.28174999356269836 |
| keywords[12].display_name | Nash equilibrium |
| keywords[13].id | https://openalex.org/keywords/sequential-game |
| keywords[13].score | 0.19028222560882568 |
| keywords[13].display_name | Sequential game |
| keywords[14].id | https://openalex.org/keywords/computer-network |
| keywords[14].score | 0.15203776955604553 |
| keywords[14].display_name | Computer network |
| keywords[15].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[15].score | 0.14700207114219666 |
| keywords[15].display_name | Mathematical optimization |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2303.03602 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2303.03602 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2303.03602 |
| locations[1].id | doi:10.48550/arxiv.2303.03602 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2303.03602 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5071702946 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Oguzhan Akcin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Akcin, Oguzhan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5022739367 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Po-han Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Po-han |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5090536067 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shubhankar Agarwal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Agarwal, Shubhankar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024120306 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0601-3633 |
| authorships[3].author.display_name | Sandeep Chinchali |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chinchali, Sandeep |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2303.03602 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data Games: A Game-Theoretic Approach to Swarm Robotic Data Collection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10249 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9911999702453613 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Distributed Control Multi-Agent Systems |
| related_works | https://openalex.org/W2066858118, https://openalex.org/W2134017072, https://openalex.org/W1976914335, https://openalex.org/W2915208987, https://openalex.org/W2152256925, https://openalex.org/W1940452713, https://openalex.org/W2058150833, https://openalex.org/W3130800703, https://openalex.org/W4293879738, https://openalex.org/W2593069794 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2303.03602 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2303.03602 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2303.03602 |
| primary_location.id | pmh:oai:arXiv.org:2303.03602 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2303.03602 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2303.03602 |
| publication_date | 2023-03-07 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.4 | 165 |
| abstract_inverted_index.a | 62, 73, 85, 125 |
| abstract_inverted_index.ML | 44, 75 |
| abstract_inverted_index.We | 112 |
| abstract_inverted_index.an | 108 |
| abstract_inverted_index.as | 107 |
| abstract_inverted_index.by | 160 |
| abstract_inverted_index.in | 39, 78, 172 |
| abstract_inverted_index.is | 12, 48 |
| abstract_inverted_index.of | 1, 8, 142 |
| abstract_inverted_index.on | 164, 180 |
| abstract_inverted_index.to | 15, 41, 51, 71, 122, 124, 147, 162 |
| abstract_inverted_index.up | 161 |
| abstract_inverted_index.we | 60, 100, 136, 151 |
| abstract_inverted_index.AVs | 69, 83 |
| abstract_inverted_index.all | 31, 133 |
| abstract_inverted_index.and | 55, 97 |
| abstract_inverted_index.but | 88 |
| abstract_inverted_index.can | 101 |
| abstract_inverted_index.due | 50 |
| abstract_inverted_index.for | 20, 169 |
| abstract_inverted_index.our | 115, 143, 155, 177, 186 |
| abstract_inverted_index.the | 79, 82, 139 |
| abstract_inverted_index.(ML) | 24 |
| abstract_inverted_index.(the | 18 |
| abstract_inverted_index.AVs. | 134 |
| abstract_inverted_index.cast | 103 |
| abstract_inverted_index.data | 56, 64, 95, 105 |
| abstract_inverted_index.each | 92 |
| abstract_inverted_index.from | 35 |
| abstract_inverted_index.have | 84 |
| abstract_inverted_index.rare | 36 |
| abstract_inverted_index.show | 113 |
| abstract_inverted_index.that | 114, 154 |
| abstract_inverted_index.this | 47 |
| abstract_inverted_index.uses | 119 |
| abstract_inverted_index.with | 129, 185 |
| abstract_inverted_index.(AVs) | 5 |
| abstract_inverted_index.Since | 81 |
| abstract_inverted_index.about | 91, 132 |
| abstract_inverted_index.align | 184 |
| abstract_inverted_index.data, | 10, 33 |
| abstract_inverted_index.game. | 111 |
| abstract_inverted_index.local | 94 |
| abstract_inverted_index.often | 13 |
| abstract_inverted_index.order | 40 |
| abstract_inverted_index.their | 32 |
| abstract_inverted_index.these | 27 |
| abstract_inverted_index.train | 42 |
| abstract_inverted_index.where | 67 |
| abstract_inverted_index.which | 11 |
| abstract_inverted_index.Fleets | 0 |
| abstract_inverted_index.cloud. | 80 |
| abstract_inverted_index.costs. | 58 |
| abstract_inverted_index.fleets | 28 |
| abstract_inverted_index.greedy | 148 |
| abstract_inverted_index.method | 156 |
| abstract_inverted_index.model, | 99 |
| abstract_inverted_index.oracle | 127 |
| abstract_inverted_index.policy | 128 |
| abstract_inverted_index.robust | 43 |
| abstract_inverted_index.shared | 86 |
| abstract_inverted_index.should | 29 |
| abstract_inverted_index.upload | 30 |
| abstract_inverted_index.adverse | 173 |
| abstract_inverted_index.central | 16 |
| abstract_inverted_index.closely | 183 |
| abstract_inverted_index.collect | 6, 72 |
| abstract_inverted_index.dataset | 77 |
| abstract_inverted_index.diverse | 74 |
| abstract_inverted_index.driving | 171 |
| abstract_inverted_index.machine | 22 |
| abstract_inverted_index.minimal | 89, 120 |
| abstract_inverted_index.models. | 25, 45 |
| abstract_inverted_index.network | 53 |
| abstract_inverted_index.other's | 93 |
| abstract_inverted_index.propose | 61 |
| abstract_inverted_index.results | 179 |
| abstract_inverted_index.sensory | 9 |
| abstract_inverted_index.servers | 17 |
| abstract_inverted_index.weather | 174 |
| abstract_inverted_index.$21.9\%$ | 163 |
| abstract_inverted_index.Finally, | 150 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.Ideally, | 26 |
| abstract_inverted_index.Instead, | 59 |
| abstract_inverted_index.benefits | 141 |
| abstract_inverted_index.compared | 146 |
| abstract_inverted_index.complete | 130 |
| abstract_inverted_index.converge | 123 |
| abstract_inverted_index.datasets | 182 |
| abstract_inverted_index.labeling | 57 |
| abstract_inverted_index.learning | 23 |
| abstract_inverted_index.sampling | 65, 117 |
| abstract_inverted_index.standard | 158 |
| abstract_inverted_index.strategy | 66, 118, 145 |
| abstract_inverted_index.training | 21, 76 |
| abstract_inverted_index.vehicles | 4 |
| abstract_inverted_index.Moreover, | 135 |
| abstract_inverted_index.bandwidth | 54 |
| abstract_inverted_index.contexts, | 38 |
| abstract_inverted_index.datasets, | 167 |
| abstract_inverted_index.including | 168 |
| abstract_inverted_index.naturally | 102 |
| abstract_inverted_index.networked | 2 |
| abstract_inverted_index.objective | 87 |
| abstract_inverted_index.operating | 37 |
| abstract_inverted_index.sampling. | 149 |
| abstract_inverted_index.terabytes | 7 |
| abstract_inverted_index.$N$-player | 109 |
| abstract_inverted_index.''cloud'') | 19 |
| abstract_inverted_index.Crucially, | 176 |
| abstract_inverted_index.autonomous | 3, 170 |
| abstract_inverted_index.benchmarks | 159 |
| abstract_inverted_index.collection | 106 |
| abstract_inverted_index.especially | 34 |
| abstract_inverted_index.infeasible | 49 |
| abstract_inverted_index.perception | 98, 166 |
| abstract_inverted_index.real-world | 181 |
| abstract_inverted_index.centralized | 126 |
| abstract_inverted_index.collaborate | 70 |
| abstract_inverted_index.conditions. | 175 |
| abstract_inverted_index.cooperative | 63, 104, 116 |
| abstract_inverted_index.demonstrate | 153 |
| abstract_inverted_index.guarantees. | 188 |
| abstract_inverted_index.information | 90, 121, 131 |
| abstract_inverted_index.outperforms | 157 |
| abstract_inverted_index.performance | 140 |
| abstract_inverted_index.prohibitive | 52 |
| abstract_inverted_index.theoretical | 187 |
| abstract_inverted_index.transmitted | 14 |
| abstract_inverted_index.characterize | 138 |
| abstract_inverted_index.distribution | 96 |
| abstract_inverted_index.experimental | 178 |
| abstract_inverted_index.mathematical | 110 |
| abstract_inverted_index.theoretically | 137 |
| abstract_inverted_index.experimentally | 152 |
| abstract_inverted_index.game-theoretic | 144 |
| abstract_inverted_index.geo-distributed | 68 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |