Data Mining Attribute Selection Approach for Drought Modelling : A Case Study for Greater Horn of Africa Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.5121/ijdkp.2017.7401
The objectives of this paper were to 1) develop an empirical method for\nselecting relevant attributes for modelling drought, and 2) select the most\nrelevant attribute for drought modelling and predictions in the Greater Horn of\nAfrica (GHA). Twenty four attributes from different domain areas were used for\nthis experimental analysis. Two attribute selection algorithms were used for\nthe current study: Principal Component Analysis (PCA) and correlation-based\nattribute selection (CAS). Using the PCA and CAS algorithms, the 24 attributes\nwere ranked by their merit value. Accordingly, 15 attributes were selected for\nmodelling drought in GHA. The average merit values for the selected attributes\nranged from 0.5 to 0.9. Future research may evaluate the developed methodology\nusing relevant classification techniques and quantify the actual information\ngain from the developed approach.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5121/ijdkp.2017.7401
- https://doi.org/10.5121/ijdkp.2017.7401
- OA Status
- bronze
- Cited By
- 26
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2742201794
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2742201794Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5121/ijdkp.2017.7401Digital Object Identifier
- Title
-
Data Mining Attribute Selection Approach for Drought Modelling : A Case Study for Greater Horn of AfricaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-07-30Full publication date if available
- Authors
-
Getachew B. Demisse, Tsegaye Tadesse, Yared BayissaList of authors in order
- Landing page
-
https://doi.org/10.5121/ijdkp.2017.7401Publisher landing page
- PDF URL
-
https://doi.org/10.5121/ijdkp.2017.7401Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5121/ijdkp.2017.7401Direct OA link when available
- Concepts
-
Principal component analysis, Selection (genetic algorithm), Data mining, Computer science, French horn, Artificial intelligence, Machine learning, Pedagogy, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
26Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 4, 2022: 5, 2021: 6Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2742201794 |
|---|---|
| doi | https://doi.org/10.5121/ijdkp.2017.7401 |
| ids.doi | https://doi.org/10.5121/ijdkp.2017.7401 |
| ids.mag | 2742201794 |
| ids.openalex | https://openalex.org/W2742201794 |
| fwci | 1.45325237 |
| type | article |
| title | Data Mining Attribute Selection Approach for Drought Modelling : A Case Study for Greater Horn of Africa |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | 16 |
| biblio.first_page | 01 |
| topics[0].id | https://openalex.org/T11186 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Hydrology and Drought Analysis |
| topics[1].id | https://openalex.org/T11490 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9476000070571899 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Hydrological Forecasting Using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C27438332 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7236939072608948 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[0].display_name | Principal component analysis |
| concepts[1].id | https://openalex.org/C81917197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6504848003387451 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[1].display_name | Selection (genetic algorithm) |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5952455997467041 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.46631038188934326 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C152076505 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4277767241001129 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1126540 |
| concepts[4].display_name | French horn |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3857933282852173 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35844364762306213 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C19417346 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[7].display_name | Pedagogy |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[0].score | 0.7236939072608948 |
| keywords[0].display_name | Principal component analysis |
| keywords[1].id | https://openalex.org/keywords/selection |
| keywords[1].score | 0.6504848003387451 |
| keywords[1].display_name | Selection (genetic algorithm) |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.5952455997467041 |
| keywords[2].display_name | Data mining |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.46631038188934326 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/french-horn |
| keywords[4].score | 0.4277767241001129 |
| keywords[4].display_name | French horn |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3857933282852173 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.35844364762306213 |
| keywords[6].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.5121/ijdkp.2017.7401 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2765052175 |
| locations[0].source.issn | 2230-9608, 2231-007X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2230-9608 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Data Mining & Knowledge Management Process |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.5121/ijdkp.2017.7401 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Data Mining & Knowledge Management Process |
| locations[0].landing_page_url | https://doi.org/10.5121/ijdkp.2017.7401 |
| locations[1].id | pmh:oai:arXiv.org:1708.05072 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1708.05072 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1708.05072 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5027350006 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Getachew B. Demisse |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114395901 |
| authorships[0].affiliations[0].raw_affiliation_string | National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln, Hardin Hall, 3310 Holdrege Street, P.O. Box 830988, Lincoln, Nebraska 68583-0988, U.S.A. |
| authorships[0].institutions[0].id | https://openalex.org/I114395901 |
| authorships[0].institutions[0].ror | https://ror.org/043mer456 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114395901 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Nebraska–Lincoln |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Getachew B. Demisse |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln, Hardin Hall, 3310 Holdrege Street, P.O. Box 830988, Lincoln, Nebraska 68583-0988, U.S.A. |
| authorships[1].author.id | https://openalex.org/A5070843904 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4102-1137 |
| authorships[1].author.display_name | Tsegaye Tadesse |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114395901 |
| authorships[1].affiliations[0].raw_affiliation_string | National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln, Hardin Hall, 3310 Holdrege Street, P.O. Box 830988, Lincoln, Nebraska 68583-0988, U.S.A. |
| authorships[1].institutions[0].id | https://openalex.org/I114395901 |
| authorships[1].institutions[0].ror | https://ror.org/043mer456 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114395901 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Nebraska–Lincoln |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tsegaye Tadesse |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln, Hardin Hall, 3310 Holdrege Street, P.O. Box 830988, Lincoln, Nebraska 68583-0988, U.S.A. |
| authorships[2].author.id | https://openalex.org/A5033131843 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2367-6559 |
| authorships[2].author.display_name | Yared Bayissa |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I114395901 |
| authorships[2].affiliations[0].raw_affiliation_string | National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln, Hardin Hall, 3310 Holdrege Street, P.O. Box 830988, Lincoln, Nebraska 68583-0988, U.S.A. |
| authorships[2].institutions[0].id | https://openalex.org/I114395901 |
| authorships[2].institutions[0].ror | https://ror.org/043mer456 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I114395901 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Nebraska–Lincoln |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yared Bayissa |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Drought Mitigation Center, School of Natural Resources, University of Nebraska-Lincoln, Hardin Hall, 3310 Holdrege Street, P.O. Box 830988, Lincoln, Nebraska 68583-0988, U.S.A. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5121/ijdkp.2017.7401 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2017-08-17T00:00:00 |
| display_name | Data Mining Attribute Selection Approach for Drought Modelling : A Case Study for Greater Horn of Africa |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11186 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Hydrology and Drought Analysis |
| related_works | https://openalex.org/W1975632186, https://openalex.org/W3027745756, https://openalex.org/W3205213561, https://openalex.org/W2531880140, https://openalex.org/W1521840795, https://openalex.org/W2404034801, https://openalex.org/W585840735, https://openalex.org/W2002946113, https://openalex.org/W2126145365, https://openalex.org/W2727148788 |
| cited_by_count | 26 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 6 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 4 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5121/ijdkp.2017.7401 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2765052175 |
| best_oa_location.source.issn | 2230-9608, 2231-007X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2230-9608 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Data Mining & Knowledge Management Process |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.5121/ijdkp.2017.7401 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Data Mining & Knowledge Management Process |
| best_oa_location.landing_page_url | https://doi.org/10.5121/ijdkp.2017.7401 |
| primary_location.id | doi:10.5121/ijdkp.2017.7401 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2765052175 |
| primary_location.source.issn | 2230-9608, 2231-007X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2230-9608 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Data Mining & Knowledge Management Process |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.5121/ijdkp.2017.7401 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Data Mining & Knowledge Management Process |
| primary_location.landing_page_url | https://doi.org/10.5121/ijdkp.2017.7401 |
| publication_date | 2017-07-30 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2109676405, https://openalex.org/W2078684405, https://openalex.org/W2998216295, https://openalex.org/W2163891305, https://openalex.org/W1495061682, https://openalex.org/W2168123127, https://openalex.org/W2309709979, https://openalex.org/W2803158764, https://openalex.org/W2521944441, https://openalex.org/W6906184069, https://openalex.org/W6910955803, https://openalex.org/W6686480937, https://openalex.org/W2068833644, https://openalex.org/W1632068600, https://openalex.org/W1560107318, https://openalex.org/W2017337590, https://openalex.org/W1570448133, https://openalex.org/W1589052184 |
| referenced_works_count | 18 |
| abstract_inverted_index.1) | 7 |
| abstract_inverted_index.15 | 79 |
| abstract_inverted_index.2) | 19 |
| abstract_inverted_index.24 | 71 |
| abstract_inverted_index.an | 9 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.in | 29, 85 |
| abstract_inverted_index.of | 2 |
| abstract_inverted_index.to | 6, 97 |
| abstract_inverted_index.0.5 | 96 |
| abstract_inverted_index.CAS | 68 |
| abstract_inverted_index.PCA | 66 |
| abstract_inverted_index.The | 0, 87 |
| abstract_inverted_index.Two | 47 |
| abstract_inverted_index.and | 18, 27, 60, 67, 109 |
| abstract_inverted_index.for | 15, 24, 91 |
| abstract_inverted_index.may | 101 |
| abstract_inverted_index.the | 21, 30, 65, 70, 92, 103, 111, 115 |
| abstract_inverted_index.0.9. | 98 |
| abstract_inverted_index.GHA. | 86 |
| abstract_inverted_index.Horn | 32 |
| abstract_inverted_index.four | 36 |
| abstract_inverted_index.from | 38, 95, 114 |
| abstract_inverted_index.this | 3 |
| abstract_inverted_index.used | 43, 52 |
| abstract_inverted_index.were | 5, 42, 51, 81 |
| abstract_inverted_index.(PCA) | 59 |
| abstract_inverted_index.Using | 64 |
| abstract_inverted_index.areas | 41 |
| abstract_inverted_index.merit | 76, 89 |
| abstract_inverted_index.paper | 4 |
| abstract_inverted_index.their | 75 |
| abstract_inverted_index.(CAS). | 63 |
| abstract_inverted_index.(GHA). | 34 |
| abstract_inverted_index.Future | 99 |
| abstract_inverted_index.Twenty | 35 |
| abstract_inverted_index.actual | 112 |
| abstract_inverted_index.domain | 40 |
| abstract_inverted_index.method | 11 |
| abstract_inverted_index.ranked | 73 |
| abstract_inverted_index.select | 20 |
| abstract_inverted_index.study: | 55 |
| abstract_inverted_index.value. | 77 |
| abstract_inverted_index.values | 90 |
| abstract_inverted_index.Greater | 31 |
| abstract_inverted_index.average | 88 |
| abstract_inverted_index.current | 54 |
| abstract_inverted_index.develop | 8 |
| abstract_inverted_index.drought | 25, 84 |
| abstract_inverted_index.Analysis | 58 |
| abstract_inverted_index.drought, | 17 |
| abstract_inverted_index.evaluate | 102 |
| abstract_inverted_index.for\nthe | 53 |
| abstract_inverted_index.quantify | 110 |
| abstract_inverted_index.relevant | 13, 106 |
| abstract_inverted_index.research | 100 |
| abstract_inverted_index.selected | 82, 93 |
| abstract_inverted_index.Component | 57 |
| abstract_inverted_index.Principal | 56 |
| abstract_inverted_index.analysis. | 46 |
| abstract_inverted_index.attribute | 23, 48 |
| abstract_inverted_index.developed | 104, 116 |
| abstract_inverted_index.different | 39 |
| abstract_inverted_index.empirical | 10 |
| abstract_inverted_index.for\nthis | 44 |
| abstract_inverted_index.modelling | 16, 26 |
| abstract_inverted_index.selection | 49, 62 |
| abstract_inverted_index.algorithms | 50 |
| abstract_inverted_index.attributes | 14, 37, 80 |
| abstract_inverted_index.objectives | 1 |
| abstract_inverted_index.of\nAfrica | 33 |
| abstract_inverted_index.techniques | 108 |
| abstract_inverted_index.algorithms, | 69 |
| abstract_inverted_index.approach.\n | 117 |
| abstract_inverted_index.predictions | 28 |
| abstract_inverted_index.Accordingly, | 78 |
| abstract_inverted_index.experimental | 45 |
| abstract_inverted_index.classification | 107 |
| abstract_inverted_index.for\nmodelling | 83 |
| abstract_inverted_index.for\nselecting | 12 |
| abstract_inverted_index.most\nrelevant | 22 |
| abstract_inverted_index.attributes\nwere | 72 |
| abstract_inverted_index.information\ngain | 113 |
| abstract_inverted_index.attributes\nranged | 94 |
| abstract_inverted_index.methodology\nusing | 105 |
| abstract_inverted_index.correlation-based\nattribute | 61 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.81175104 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |