Data Mining Based Marketing Decision Support System Using Hybrid Machine Learning Algorithm Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.36548/jaicn.2020.3.007
Data mining is widely used in engineering and science, On the contrary, it is used in finance and marketing applications to resolve the challenges in the respective fields. Data mining based decision support system enhances the organization performance by analysing the ground reality. Turbulent economy is common for every organization due to the competition, cost, tax pressures, etc., Privatization, Globalization and liberalization drags the organization more into a competitive environment. In order to balance the competition and withstand to achieve desired gain proper marketing strategies are need to planned and executed. Marketing decision support system helps to reduce the organization burdens in analysing and strategical planning through its efficient data mining approach. This research work proposed a data mining based decision support system using decision tree and artificial neural network as a hybrid approach to estimate the marketing strategies for an organization.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.36548/jaicn.2020.3.007
- https://doi.org/10.36548/jaicn.2020.3.007
- OA Status
- diamond
- Cited By
- 34
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4241684713
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4241684713Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36548/jaicn.2020.3.007Digital Object Identifier
- Title
-
Data Mining Based Marketing Decision Support System Using Hybrid Machine Learning AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-28Full publication date if available
- Authors
-
Senthil Kumar ThangavelList of authors in order
- Landing page
-
https://doi.org/10.36548/jaicn.2020.3.007Publisher landing page
- PDF URL
-
https://doi.org/10.36548/jaicn.2020.3.007Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36548/jaicn.2020.3.007Direct OA link when available
- Concepts
-
Decision support system, Decision tree, Computer science, Artificial neural network, Competition (biology), Order (exchange), Marketing strategy, Marketing research, Machine learning, Data mining, Marketing, Artificial intelligence, Algorithm, Business, Ecology, Biology, FinanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
34Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 8, 2023: 10, 2022: 9, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4241684713 |
|---|---|
| doi | https://doi.org/10.36548/jaicn.2020.3.007 |
| ids.doi | https://doi.org/10.36548/jaicn.2020.3.007 |
| ids.openalex | https://openalex.org/W4241684713 |
| fwci | 6.21428834 |
| type | article |
| title | Data Mining Based Marketing Decision Support System Using Hybrid Machine Learning Algorithm |
| biblio.issue | 3 |
| biblio.volume | 2 |
| biblio.last_page | 193 |
| biblio.first_page | 185 |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9948999881744385 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| topics[1].id | https://openalex.org/T12384 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.984000027179718 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1406 |
| topics[1].subfield.display_name | Marketing |
| topics[1].display_name | Customer churn and segmentation |
| topics[2].id | https://openalex.org/T11326 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9279999732971191 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Stock Market Forecasting Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107327155 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6304347515106201 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q330268 |
| concepts[0].display_name | Decision support system |
| concepts[1].id | https://openalex.org/C84525736 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6109175682067871 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[1].display_name | Decision tree |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5533520579338074 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.550182580947876 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C91306197 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4994068145751953 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q45767 |
| concepts[4].display_name | Competition (biology) |
| concepts[5].id | https://openalex.org/C182306322 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45200154185295105 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[5].display_name | Order (exchange) |
| concepts[6].id | https://openalex.org/C93032411 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4138898253440857 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1363963 |
| concepts[6].display_name | Marketing strategy |
| concepts[7].id | https://openalex.org/C48891531 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41282832622528076 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1141436 |
| concepts[7].display_name | Marketing research |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3900303840637207 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3883642852306366 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C162853370 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37453556060791016 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[10].display_name | Marketing |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36984413862228394 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3662494421005249 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C144133560 |
| concepts[13].level | 0 |
| concepts[13].score | 0.23105087876319885 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[13].display_name | Business |
| concepts[14].id | https://openalex.org/C18903297 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[14].display_name | Ecology |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C10138342 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[16].display_name | Finance |
| keywords[0].id | https://openalex.org/keywords/decision-support-system |
| keywords[0].score | 0.6304347515106201 |
| keywords[0].display_name | Decision support system |
| keywords[1].id | https://openalex.org/keywords/decision-tree |
| keywords[1].score | 0.6109175682067871 |
| keywords[1].display_name | Decision tree |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5533520579338074 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.550182580947876 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/competition |
| keywords[4].score | 0.4994068145751953 |
| keywords[4].display_name | Competition (biology) |
| keywords[5].id | https://openalex.org/keywords/order |
| keywords[5].score | 0.45200154185295105 |
| keywords[5].display_name | Order (exchange) |
| keywords[6].id | https://openalex.org/keywords/marketing-strategy |
| keywords[6].score | 0.4138898253440857 |
| keywords[6].display_name | Marketing strategy |
| keywords[7].id | https://openalex.org/keywords/marketing-research |
| keywords[7].score | 0.41282832622528076 |
| keywords[7].display_name | Marketing research |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3900303840637207 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.3883642852306366 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/marketing |
| keywords[10].score | 0.37453556060791016 |
| keywords[10].display_name | Marketing |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.36984413862228394 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.3662494421005249 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/business |
| keywords[13].score | 0.23105087876319885 |
| keywords[13].display_name | Business |
| language | en |
| locations[0].id | doi:10.36548/jaicn.2020.3.007 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210216842 |
| locations[0].source.issn | 2582-2012 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2582-2012 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Artificial Intelligence and Capsule Networks |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.36548/jaicn.2020.3.007 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Artificial Intelligence and Capsule Networks |
| locations[0].landing_page_url | https://doi.org/10.36548/jaicn.2020.3.007 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5009128496 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8160-7223 |
| authorships[0].author.display_name | Senthil Kumar Thangavel |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Dr. T. Senthil Kumar |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36548/jaicn.2020.3.007 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data Mining Based Marketing Decision Support System Using Hybrid Machine Learning Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9948999881744385 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W1470425429, https://openalex.org/W4318350883, https://openalex.org/W4328134586, https://openalex.org/W4205478082, https://openalex.org/W3185179407, https://openalex.org/W4281385048, https://openalex.org/W4361795583, https://openalex.org/W4313001487, https://openalex.org/W4308191010, https://openalex.org/W2593303286 |
| cited_by_count | 34 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36548/jaicn.2020.3.007 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210216842 |
| best_oa_location.source.issn | 2582-2012 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2582-2012 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Artificial Intelligence and Capsule Networks |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.36548/jaicn.2020.3.007 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Artificial Intelligence and Capsule Networks |
| best_oa_location.landing_page_url | https://doi.org/10.36548/jaicn.2020.3.007 |
| primary_location.id | doi:10.36548/jaicn.2020.3.007 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210216842 |
| primary_location.source.issn | 2582-2012 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2582-2012 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Artificial Intelligence and Capsule Networks |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.36548/jaicn.2020.3.007 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Artificial Intelligence and Capsule Networks |
| primary_location.landing_page_url | https://doi.org/10.36548/jaicn.2020.3.007 |
| publication_date | 2020-08-28 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2746326988, https://openalex.org/W2767167950, https://openalex.org/W2951571457, https://openalex.org/W2735649745, https://openalex.org/W2885518146, https://openalex.org/W2735566545, https://openalex.org/W2947544054, https://openalex.org/W2884627861, https://openalex.org/W2946091273, https://openalex.org/W2789639487, https://openalex.org/W2765934242, https://openalex.org/W2907417525, https://openalex.org/W3017030721, https://openalex.org/W3045398263, https://openalex.org/W2810261087 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 67, 116, 131 |
| abstract_inverted_index.In | 70 |
| abstract_inverted_index.On | 9 |
| abstract_inverted_index.an | 140 |
| abstract_inverted_index.as | 130 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.in | 5, 15, 24, 101 |
| abstract_inverted_index.is | 2, 13, 45 |
| abstract_inverted_index.it | 12 |
| abstract_inverted_index.to | 20, 51, 72, 78, 87, 96, 134 |
| abstract_inverted_index.and | 7, 17, 60, 76, 89, 103, 126 |
| abstract_inverted_index.are | 85 |
| abstract_inverted_index.due | 50 |
| abstract_inverted_index.for | 47, 139 |
| abstract_inverted_index.its | 107 |
| abstract_inverted_index.tax | 55 |
| abstract_inverted_index.the | 10, 22, 25, 35, 40, 52, 63, 74, 98, 136 |
| abstract_inverted_index.Data | 0, 28 |
| abstract_inverted_index.This | 112 |
| abstract_inverted_index.data | 109, 117 |
| abstract_inverted_index.gain | 81 |
| abstract_inverted_index.into | 66 |
| abstract_inverted_index.more | 65 |
| abstract_inverted_index.need | 86 |
| abstract_inverted_index.tree | 125 |
| abstract_inverted_index.used | 4, 14 |
| abstract_inverted_index.work | 114 |
| abstract_inverted_index.based | 30, 119 |
| abstract_inverted_index.cost, | 54 |
| abstract_inverted_index.drags | 62 |
| abstract_inverted_index.etc., | 57 |
| abstract_inverted_index.every | 48 |
| abstract_inverted_index.helps | 95 |
| abstract_inverted_index.order | 71 |
| abstract_inverted_index.using | 123 |
| abstract_inverted_index.common | 46 |
| abstract_inverted_index.ground | 41 |
| abstract_inverted_index.hybrid | 132 |
| abstract_inverted_index.mining | 1, 29, 110, 118 |
| abstract_inverted_index.neural | 128 |
| abstract_inverted_index.proper | 82 |
| abstract_inverted_index.reduce | 97 |
| abstract_inverted_index.system | 33, 94, 122 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.achieve | 79 |
| abstract_inverted_index.balance | 73 |
| abstract_inverted_index.burdens | 100 |
| abstract_inverted_index.desired | 80 |
| abstract_inverted_index.economy | 44 |
| abstract_inverted_index.fields. | 27 |
| abstract_inverted_index.finance | 16 |
| abstract_inverted_index.network | 129 |
| abstract_inverted_index.planned | 88 |
| abstract_inverted_index.resolve | 21 |
| abstract_inverted_index.support | 32, 93, 121 |
| abstract_inverted_index.through | 106 |
| abstract_inverted_index.approach | 133 |
| abstract_inverted_index.decision | 31, 92, 120, 124 |
| abstract_inverted_index.enhances | 34 |
| abstract_inverted_index.estimate | 135 |
| abstract_inverted_index.planning | 105 |
| abstract_inverted_index.proposed | 115 |
| abstract_inverted_index.reality. | 42 |
| abstract_inverted_index.research | 113 |
| abstract_inverted_index.science, | 8 |
| abstract_inverted_index.Marketing | 91 |
| abstract_inverted_index.Turbulent | 43 |
| abstract_inverted_index.analysing | 39, 102 |
| abstract_inverted_index.approach. | 111 |
| abstract_inverted_index.contrary, | 11 |
| abstract_inverted_index.efficient | 108 |
| abstract_inverted_index.executed. | 90 |
| abstract_inverted_index.marketing | 18, 83, 137 |
| abstract_inverted_index.withstand | 77 |
| abstract_inverted_index.artificial | 127 |
| abstract_inverted_index.challenges | 23 |
| abstract_inverted_index.pressures, | 56 |
| abstract_inverted_index.respective | 26 |
| abstract_inverted_index.strategies | 84, 138 |
| abstract_inverted_index.competition | 75 |
| abstract_inverted_index.competitive | 68 |
| abstract_inverted_index.engineering | 6 |
| abstract_inverted_index.performance | 37 |
| abstract_inverted_index.strategical | 104 |
| abstract_inverted_index.applications | 19 |
| abstract_inverted_index.competition, | 53 |
| abstract_inverted_index.environment. | 69 |
| abstract_inverted_index.organization | 36, 49, 64, 99 |
| abstract_inverted_index.Globalization | 59 |
| abstract_inverted_index.organization. | 141 |
| abstract_inverted_index.Privatization, | 58 |
| abstract_inverted_index.liberalization | 61 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5009128496 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.96212489 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |