Data processing solutions to render metabolomics more quantitative: case studies in food and clinical metabolomics using Metabox 2.0 Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/gigascience/giae005
In classic semiquantitative metabolomics, metabolite intensities are affected by biological factors and other unwanted variations. A systematic evaluation of the data processing methods is crucial to identify adequate processing procedures for a given experimental setup. Current comparative studies are mostly focused on peak area data but not on absolute concentrations. In this study, we evaluated data processing methods to produce outputs that were most similar to the corresponding absolute quantified data. We examined the data distribution characteristics, fold difference patterns between 2 metabolites, and sample variance. We used 2 metabolomic datasets from a retail milk study and a lupus nephritis cohort as test cases. When studying the impact of data normalization, transformation, scaling, and combinations of these methods, we found that the cross-contribution compensating multiple standard normalization (ccmn) method, followed by square root data transformation, was most appropriate for a well-controlled study such as the milk study dataset. Regarding the lupus nephritis cohort study, only ccmn normalization could slightly improve the data quality of the noisy cohort. Since the assessment accounted for the resemblance between processed data and the corresponding absolute quantified data, our results denote a helpful guideline for processing metabolomic datasets within a similar context (food and clinical metabolomics). Finally, we introduce Metabox 2.0, which enables thorough analysis of metabolomic data, including data processing, biomarker analysis, integrative analysis, and data interpretation. It was successfully used to process and analyze the data in this study. An online web version is available at http://metsysbio.com/metabox.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/gigascience/giae005
- https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giae005/56985710/giae005.pdf
- OA Status
- gold
- Cited By
- 9
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392848448
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392848448Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/gigascience/giae005Digital Object Identifier
- Title
-
Data processing solutions to render metabolomics more quantitative: case studies in food and clinical metabolomics using Metabox 2.0Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Kwanjeera Wanichthanarak, Ammarin In-on, Sili Fan, Oliver Fiehn, Arporn Wangwiwatsin, Sakda KhoomrungList of authors in order
- Landing page
-
https://doi.org/10.1093/gigascience/giae005Publisher landing page
- PDF URL
-
https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giae005/56985710/giae005.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giae005/56985710/giae005.pdfDirect OA link when available
- Concepts
-
Metabolomics, Normalization (sociology), Database normalization, Computer science, Data processing, Context (archaeology), Data mining, Data quality, Bioinformatics, Artificial intelligence, Pattern recognition (psychology), Biology, Operating system, Sociology, Economics, Metric (unit), Operations management, Anthropology, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392848448 |
|---|---|
| doi | https://doi.org/10.1093/gigascience/giae005 |
| ids.doi | https://doi.org/10.1093/gigascience/giae005 |
| ids.openalex | https://openalex.org/W4392848448 |
| fwci | 4.32222503 |
| type | article |
| title | Data processing solutions to render metabolomics more quantitative: case studies in food and clinical metabolomics using Metabox 2.0 |
| awards[0].id | https://openalex.org/G4206704164 |
| awards[0].funder_id | https://openalex.org/F4320322335 |
| awards[0].display_name | |
| awards[0].funder_award_id | 630000050069 |
| awards[0].funder_display_name | Khon Kaen University |
| awards[1].id | https://openalex.org/G724898389 |
| awards[1].funder_id | https://openalex.org/F4320322401 |
| awards[1].display_name | |
| awards[1].funder_award_id | R016420001 |
| awards[1].funder_display_name | Mahidol University |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10836 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Metabolomics and Mass Spectrometry Studies |
| topics[1].id | https://openalex.org/T12647 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9729999899864197 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2707 |
| topics[1].subfield.display_name | Complementary and alternative medicine |
| topics[1].display_name | Traditional Chinese Medicine Studies |
| topics[2].id | https://openalex.org/T10066 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9587000012397766 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Gut microbiota and health |
| funders[0].id | https://openalex.org/F4320322335 |
| funders[0].ror | https://ror.org/03cq4gr50 |
| funders[0].display_name | Khon Kaen University |
| funders[1].id | https://openalex.org/F4320322401 |
| funders[1].ror | https://ror.org/01znkr924 |
| funders[1].display_name | Mahidol University |
| is_xpac | False |
| apc_list.value | 2439 |
| apc_list.currency | USD |
| apc_list.value_usd | 2439 |
| apc_paid.value | 2439 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2439 |
| concepts[0].id | https://openalex.org/C21565614 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7297028303146362 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12149006 |
| concepts[0].display_name | Metabolomics |
| concepts[1].id | https://openalex.org/C136886441 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7081165909767151 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[1].display_name | Normalization (sociology) |
| concepts[2].id | https://openalex.org/C162984825 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6270424127578735 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q339072 |
| concepts[2].display_name | Database normalization |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5523699522018433 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C138827492 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5360956788063049 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6661985 |
| concepts[4].display_name | Data processing |
| concepts[5].id | https://openalex.org/C2779343474 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4729050397872925 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[5].display_name | Context (archaeology) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4433109164237976 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C24756922 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4115895926952362 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[7].display_name | Data quality |
| concepts[8].id | https://openalex.org/C60644358 |
| concepts[8].level | 1 |
| concepts[8].score | 0.26262515783309937 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[8].display_name | Bioinformatics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2594027519226074 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.24317878484725952 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11039695143699646 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C144024400 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[13].display_name | Sociology |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C176217482 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[15].display_name | Metric (unit) |
| concepts[16].id | https://openalex.org/C21547014 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[16].display_name | Operations management |
| concepts[17].id | https://openalex.org/C19165224 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[17].display_name | Anthropology |
| concepts[18].id | https://openalex.org/C151730666 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[18].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/metabolomics |
| keywords[0].score | 0.7297028303146362 |
| keywords[0].display_name | Metabolomics |
| keywords[1].id | https://openalex.org/keywords/normalization |
| keywords[1].score | 0.7081165909767151 |
| keywords[1].display_name | Normalization (sociology) |
| keywords[2].id | https://openalex.org/keywords/database-normalization |
| keywords[2].score | 0.6270424127578735 |
| keywords[2].display_name | Database normalization |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5523699522018433 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-processing |
| keywords[4].score | 0.5360956788063049 |
| keywords[4].display_name | Data processing |
| keywords[5].id | https://openalex.org/keywords/context |
| keywords[5].score | 0.4729050397872925 |
| keywords[5].display_name | Context (archaeology) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.4433109164237976 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/data-quality |
| keywords[7].score | 0.4115895926952362 |
| keywords[7].display_name | Data quality |
| keywords[8].id | https://openalex.org/keywords/bioinformatics |
| keywords[8].score | 0.26262515783309937 |
| keywords[8].display_name | Bioinformatics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.2594027519226074 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.24317878484725952 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/biology |
| keywords[11].score | 0.11039695143699646 |
| keywords[11].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1093/gigascience/giae005 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2735135405 |
| locations[0].source.issn | 2047-217X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2047-217X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | GigaScience |
| locations[0].source.host_organization | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_name | University of Oxford |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giae005/56985710/giae005.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | GigaScience |
| locations[0].landing_page_url | https://doi.org/10.1093/gigascience/giae005 |
| locations[1].id | pmh:oai:escholarship.org:ark:/13030/qt0fw7m263 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://escholarship.org/uc/item/0fw7m263 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5082660216 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0245-0833 |
| authorships[0].author.display_name | Kwanjeera Wanichthanarak |
| authorships[0].countries | TH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1332387789, https://openalex.org/I25399158 |
| authorships[0].affiliations[0].raw_affiliation_string | Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I1332387789, https://openalex.org/I25399158 |
| authorships[0].affiliations[1].raw_affiliation_string | Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[0].institutions[0].id | https://openalex.org/I25399158 |
| authorships[0].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[0].institutions[0].country_code | TH |
| authorships[0].institutions[0].display_name | Mahidol University |
| authorships[0].institutions[1].id | https://openalex.org/I1332387789 |
| authorships[0].institutions[1].ror | https://ror.org/0331zs648 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I1332387789 |
| authorships[0].institutions[1].country_code | TH |
| authorships[0].institutions[1].display_name | Siriraj Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kwanjeera Wanichthanarak |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[1].author.id | https://openalex.org/A5042915274 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9618-6473 |
| authorships[1].author.display_name | Ammarin In-on |
| authorships[1].countries | TH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1332387789, https://openalex.org/I25399158 |
| authorships[1].affiliations[0].raw_affiliation_string | Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1332387789, https://openalex.org/I25399158 |
| authorships[1].affiliations[1].raw_affiliation_string | Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[1].institutions[0].id | https://openalex.org/I25399158 |
| authorships[1].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[1].institutions[0].country_code | TH |
| authorships[1].institutions[0].display_name | Mahidol University |
| authorships[1].institutions[1].id | https://openalex.org/I1332387789 |
| authorships[1].institutions[1].ror | https://ror.org/0331zs648 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I1332387789 |
| authorships[1].institutions[1].country_code | TH |
| authorships[1].institutions[1].display_name | Siriraj Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ammarin In-on |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[2].author.id | https://openalex.org/A5011803919 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3497-1695 |
| authorships[2].author.display_name | Sili Fan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biostatistics, University of California Davis, Davis, CA 95616, USA |
| authorships[2].institutions[0].id | https://openalex.org/I84218800 |
| authorships[2].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Davis |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sili Fan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biostatistics, University of California Davis, Davis, CA 95616, USA |
| authorships[3].author.id | https://openalex.org/A5087349635 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6261-8928 |
| authorships[3].author.display_name | Oliver Fiehn |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I84218800 |
| authorships[3].affiliations[0].raw_affiliation_string | West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA |
| authorships[3].institutions[0].id | https://openalex.org/I84218800 |
| authorships[3].institutions[0].ror | https://ror.org/05rrcem69 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I84218800 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Davis |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Oliver Fiehn |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA |
| authorships[4].author.id | https://openalex.org/A5039122232 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4536-4492 |
| authorships[4].author.display_name | Arporn Wangwiwatsin |
| authorships[4].countries | TH |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I179193067 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand |
| authorships[4].institutions[0].id | https://openalex.org/I179193067 |
| authorships[4].institutions[0].ror | https://ror.org/03cq4gr50 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I179193067 |
| authorships[4].institutions[0].country_code | TH |
| authorships[4].institutions[0].display_name | Khon Kaen University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Arporn Wangwiwatsin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand |
| authorships[5].author.id | https://openalex.org/A5049415271 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9461-8597 |
| authorships[5].author.display_name | Sakda Khoomrung |
| authorships[5].countries | TH |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I25399158 |
| authorships[5].affiliations[0].raw_affiliation_string | Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I1332387789, https://openalex.org/I25399158 |
| authorships[5].affiliations[1].raw_affiliation_string | Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I1332387789, https://openalex.org/I25399158 |
| authorships[5].affiliations[2].raw_affiliation_string | Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[5].affiliations[3].institution_ids | https://openalex.org/I1332387789, https://openalex.org/I25399158 |
| authorships[5].affiliations[3].raw_affiliation_string | Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| authorships[5].institutions[0].id | https://openalex.org/I25399158 |
| authorships[5].institutions[0].ror | https://ror.org/01znkr924 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I25399158 |
| authorships[5].institutions[0].country_code | TH |
| authorships[5].institutions[0].display_name | Mahidol University |
| authorships[5].institutions[1].id | https://openalex.org/I1332387789 |
| authorships[5].institutions[1].ror | https://ror.org/0331zs648 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I1332387789 |
| authorships[5].institutions[1].country_code | TH |
| authorships[5].institutions[1].display_name | Siriraj Hospital |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Sakda Khoomrung |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10700, Thailand, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Siriraj Center of Research Excellence in Metabolomics and Systems Biology (SiCORE-MSB), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giae005/56985710/giae005.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data processing solutions to render metabolomics more quantitative: case studies in food and clinical metabolomics using Metabox 2.0 |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10836 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Metabolomics and Mass Spectrometry Studies |
| related_works | https://openalex.org/W4241705247, https://openalex.org/W2145362441, https://openalex.org/W2101622345, https://openalex.org/W2582603276, https://openalex.org/W3134304369, https://openalex.org/W2904308980, https://openalex.org/W4386281023, https://openalex.org/W4312138714, https://openalex.org/W2113286112, https://openalex.org/W2012771827 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1093/gigascience/giae005 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2735135405 |
| best_oa_location.source.issn | 2047-217X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2047-217X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | GigaScience |
| best_oa_location.source.host_organization | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_name | University of Oxford |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giae005/56985710/giae005.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | GigaScience |
| best_oa_location.landing_page_url | https://doi.org/10.1093/gigascience/giae005 |
| primary_location.id | doi:10.1093/gigascience/giae005 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2735135405 |
| primary_location.source.issn | 2047-217X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2047-217X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | GigaScience |
| primary_location.source.host_organization | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_name | University of Oxford |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/gigascience/article-pdf/doi/10.1093/gigascience/giae005/56985710/giae005.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | GigaScience |
| primary_location.landing_page_url | https://doi.org/10.1093/gigascience/giae005 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1796281867, https://openalex.org/W2735559031, https://openalex.org/W2969664314, https://openalex.org/W2750418328, https://openalex.org/W2068707643, https://openalex.org/W2988486502, https://openalex.org/W2942313777, https://openalex.org/W2913413642, https://openalex.org/W3012822544, https://openalex.org/W4281887677, https://openalex.org/W2033173265, https://openalex.org/W2338241819, https://openalex.org/W3016079540, https://openalex.org/W2195361054, https://openalex.org/W2607041829, https://openalex.org/W2584556111, https://openalex.org/W3208387910, https://openalex.org/W3118174856, https://openalex.org/W2058232090, https://openalex.org/W2086432763, https://openalex.org/W2979573534, https://openalex.org/W1998033595, https://openalex.org/W2039077785, https://openalex.org/W2124911115, https://openalex.org/W2565482980, https://openalex.org/W2043466579, https://openalex.org/W2146614932, https://openalex.org/W3018049863, https://openalex.org/W6630605387, https://openalex.org/W6869322173, https://openalex.org/W2019497601, https://openalex.org/W1541175366, https://openalex.org/W4289527519, https://openalex.org/W6869699453, https://openalex.org/W2341820027, https://openalex.org/W2889038880, https://openalex.org/W2978156488, https://openalex.org/W2167778120, https://openalex.org/W1998767819, https://openalex.org/W4206447491, https://openalex.org/W3017912976, https://openalex.org/W3159995035, https://openalex.org/W3159549515, https://openalex.org/W2608815200, https://openalex.org/W4322739219, https://openalex.org/W3173937265, https://openalex.org/W2004235182, https://openalex.org/W4387045121, https://openalex.org/W2614935527, https://openalex.org/W2801873750, https://openalex.org/W2024163331, https://openalex.org/W4392848448, https://openalex.org/W1960974681, https://openalex.org/W4399638148, https://openalex.org/W4399438375, https://openalex.org/W2895205778 |
| referenced_works_count | 56 |
| abstract_inverted_index.2 | 82, 89 |
| abstract_inverted_index.A | 16 |
| abstract_inverted_index.a | 32, 93, 98, 140, 187, 195 |
| abstract_inverted_index.An | 237 |
| abstract_inverted_index.In | 1, 51 |
| abstract_inverted_index.It | 224 |
| abstract_inverted_index.We | 72, 87 |
| abstract_inverted_index.as | 102, 144 |
| abstract_inverted_index.at | 243 |
| abstract_inverted_index.by | 9, 131 |
| abstract_inverted_index.in | 234 |
| abstract_inverted_index.is | 24, 241 |
| abstract_inverted_index.of | 19, 109, 116, 164, 211 |
| abstract_inverted_index.on | 42, 48 |
| abstract_inverted_index.to | 26, 59, 66, 228 |
| abstract_inverted_index.we | 54, 119, 203 |
| abstract_inverted_index.and | 12, 84, 97, 114, 178, 199, 221, 230 |
| abstract_inverted_index.are | 7, 39 |
| abstract_inverted_index.but | 46 |
| abstract_inverted_index.for | 31, 139, 172, 190 |
| abstract_inverted_index.not | 47 |
| abstract_inverted_index.our | 184 |
| abstract_inverted_index.the | 20, 67, 74, 107, 122, 145, 150, 161, 165, 169, 173, 179, 232 |
| abstract_inverted_index.was | 136, 225 |
| abstract_inverted_index.web | 239 |
| abstract_inverted_index.2.0, | 206 |
| abstract_inverted_index.When | 105 |
| abstract_inverted_index.area | 44 |
| abstract_inverted_index.ccmn | 156 |
| abstract_inverted_index.data | 21, 45, 56, 75, 110, 134, 162, 177, 215, 222, 233 |
| abstract_inverted_index.fold | 78 |
| abstract_inverted_index.from | 92 |
| abstract_inverted_index.milk | 95, 146 |
| abstract_inverted_index.most | 64, 137 |
| abstract_inverted_index.only | 155 |
| abstract_inverted_index.peak | 43 |
| abstract_inverted_index.root | 133 |
| abstract_inverted_index.such | 143 |
| abstract_inverted_index.test | 103 |
| abstract_inverted_index.that | 62, 121 |
| abstract_inverted_index.this | 52, 235 |
| abstract_inverted_index.used | 88, 227 |
| abstract_inverted_index.were | 63 |
| abstract_inverted_index.(food | 198 |
| abstract_inverted_index.Since | 168 |
| abstract_inverted_index.could | 158 |
| abstract_inverted_index.data, | 183, 213 |
| abstract_inverted_index.data. | 71 |
| abstract_inverted_index.found | 120 |
| abstract_inverted_index.given | 33 |
| abstract_inverted_index.lupus | 99, 151 |
| abstract_inverted_index.noisy | 166 |
| abstract_inverted_index.other | 13 |
| abstract_inverted_index.study | 96, 142, 147 |
| abstract_inverted_index.these | 117 |
| abstract_inverted_index.which | 207 |
| abstract_inverted_index.(ccmn) | 128 |
| abstract_inverted_index.cases. | 104 |
| abstract_inverted_index.cohort | 101, 153 |
| abstract_inverted_index.denote | 186 |
| abstract_inverted_index.impact | 108 |
| abstract_inverted_index.mostly | 40 |
| abstract_inverted_index.online | 238 |
| abstract_inverted_index.retail | 94 |
| abstract_inverted_index.sample | 85 |
| abstract_inverted_index.setup. | 35 |
| abstract_inverted_index.square | 132 |
| abstract_inverted_index.study, | 53, 154 |
| abstract_inverted_index.study. | 236 |
| abstract_inverted_index.within | 194 |
| abstract_inverted_index.Current | 36 |
| abstract_inverted_index.Metabox | 205 |
| abstract_inverted_index.analyze | 231 |
| abstract_inverted_index.between | 81, 175 |
| abstract_inverted_index.classic | 2 |
| abstract_inverted_index.cohort. | 167 |
| abstract_inverted_index.context | 197 |
| abstract_inverted_index.crucial | 25 |
| abstract_inverted_index.enables | 208 |
| abstract_inverted_index.factors | 11 |
| abstract_inverted_index.focused | 41 |
| abstract_inverted_index.helpful | 188 |
| abstract_inverted_index.improve | 160 |
| abstract_inverted_index.method, | 129 |
| abstract_inverted_index.methods | 23, 58 |
| abstract_inverted_index.outputs | 61 |
| abstract_inverted_index.process | 229 |
| abstract_inverted_index.produce | 60 |
| abstract_inverted_index.quality | 163 |
| abstract_inverted_index.results | 185 |
| abstract_inverted_index.similar | 65, 196 |
| abstract_inverted_index.studies | 38 |
| abstract_inverted_index.version | 240 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 202 |
| abstract_inverted_index.absolute | 49, 69, 181 |
| abstract_inverted_index.adequate | 28 |
| abstract_inverted_index.affected | 8 |
| abstract_inverted_index.analysis | 210 |
| abstract_inverted_index.clinical | 200 |
| abstract_inverted_index.dataset. | 148 |
| abstract_inverted_index.datasets | 91, 193 |
| abstract_inverted_index.examined | 73 |
| abstract_inverted_index.followed | 130 |
| abstract_inverted_index.identify | 27 |
| abstract_inverted_index.methods, | 118 |
| abstract_inverted_index.multiple | 125 |
| abstract_inverted_index.patterns | 80 |
| abstract_inverted_index.scaling, | 113 |
| abstract_inverted_index.slightly | 159 |
| abstract_inverted_index.standard | 126 |
| abstract_inverted_index.studying | 106 |
| abstract_inverted_index.thorough | 209 |
| abstract_inverted_index.unwanted | 14 |
| abstract_inverted_index.Regarding | 149 |
| abstract_inverted_index.accounted | 171 |
| abstract_inverted_index.analysis, | 218, 220 |
| abstract_inverted_index.available | 242 |
| abstract_inverted_index.biomarker | 217 |
| abstract_inverted_index.evaluated | 55 |
| abstract_inverted_index.guideline | 189 |
| abstract_inverted_index.including | 214 |
| abstract_inverted_index.introduce | 204 |
| abstract_inverted_index.nephritis | 100, 152 |
| abstract_inverted_index.processed | 176 |
| abstract_inverted_index.variance. | 86 |
| abstract_inverted_index.assessment | 170 |
| abstract_inverted_index.biological | 10 |
| abstract_inverted_index.difference | 79 |
| abstract_inverted_index.evaluation | 18 |
| abstract_inverted_index.metabolite | 5 |
| abstract_inverted_index.procedures | 30 |
| abstract_inverted_index.processing | 22, 29, 57, 191 |
| abstract_inverted_index.quantified | 70, 182 |
| abstract_inverted_index.systematic | 17 |
| abstract_inverted_index.appropriate | 138 |
| abstract_inverted_index.comparative | 37 |
| abstract_inverted_index.integrative | 219 |
| abstract_inverted_index.intensities | 6 |
| abstract_inverted_index.metabolomic | 90, 192, 212 |
| abstract_inverted_index.processing, | 216 |
| abstract_inverted_index.resemblance | 174 |
| abstract_inverted_index.variations. | 15 |
| abstract_inverted_index.combinations | 115 |
| abstract_inverted_index.compensating | 124 |
| abstract_inverted_index.distribution | 76 |
| abstract_inverted_index.experimental | 34 |
| abstract_inverted_index.metabolites, | 83 |
| abstract_inverted_index.successfully | 226 |
| abstract_inverted_index.corresponding | 68, 180 |
| abstract_inverted_index.metabolomics, | 4 |
| abstract_inverted_index.normalization | 127, 157 |
| abstract_inverted_index.metabolomics). | 201 |
| abstract_inverted_index.normalization, | 111 |
| abstract_inverted_index.concentrations. | 50 |
| abstract_inverted_index.interpretation. | 223 |
| abstract_inverted_index.transformation, | 112, 135 |
| abstract_inverted_index.well-controlled | 141 |
| abstract_inverted_index.characteristics, | 77 |
| abstract_inverted_index.semiquantitative | 3 |
| abstract_inverted_index.cross-contribution | 123 |
| abstract_inverted_index.http://metsysbio.com/metabox. | 244 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.550000011920929 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.9079403 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |