Data processing techniques to improve data integration from dairy farms Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3168/jdsc.2024-0723
Large-scale data generation on dairy cattle farms is expected to continue increasing due to more animals per farm and the adoption of on-farm sensors and technologies that generate additional information on individual animals in greater frequency. Siloed data and information, lacking interoperability, prevent end users from combining data from multiple data sources and drawing more meaningful conclusions from the data generated on farm. As a result of these data challenges, the objective of this technical note is to describe a process of designing and documenting the development of a data ecosystem that automatically collects, performs quality control, and integrates data from disparate data sources used on experimental and commercial dairy farms. Integrated data can be queried to answer specific questions or generate timed reports that provide more insight than singular data sources can provide. Our objective was to develop a collaborative research data infrastructure that enables comprehensive data accessibility through an integrated computational ecosystem comprising open-source technologies of JupyterHub, Python, and Apache Spark. This shared curated environment facilitates extensive dataset consumption, empowering users to leverage distributed computing resources and parallel processing capabilities for sophisticated multi-dataset analysis and integration. Before user accessibility, the farm data undergo a rigorous multistage preprocessing protocol designed to mitigate potential data integrity challenges. These comprehensive data curation steps systematically address complex variability with sources, including vendor-specific software modifications, intermittent data retrieval disruptions, and farm-level operational contingencies. Employing sophisticated data cleaning, transformation, and validation methodologies, the infrastructure ensures robust data standardization and quality assurance. The integration of datasets from different data sources is paramount for improving dairy cattle welfare and production efficiency, which are complex management and breeding goals influenced by a multitude of traits that can be measured by different sensors. We identified research and further development needed in the field of dairy data science (e.g., data editing and quality control procedures, references and standards for novel sensor-based variables, and validation of obtained data across sensors), which is expected to continue playing a major role in the dairy industry sustainability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3168/jdsc.2024-0723
- https://www.jdscommun.org/action/showPdf?pii=S2666910225000389
- OA Status
- gold
- Cited By
- 6
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408348705
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408348705Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3168/jdsc.2024-0723Digital Object Identifier
- Title
-
Data processing techniques to improve data integration from dairy farmsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-12Full publication date if available
- Authors
-
Jacquelyn P. Boerman, Luiz F. Brito, Maria E. Montes, Jacob M Maskal, Jarrod Doucette, Kirby KalbaughList of authors in order
- Landing page
-
https://doi.org/10.3168/jdsc.2024-0723Publisher landing page
- PDF URL
-
https://www.jdscommun.org/action/showPdf?pii=S2666910225000389Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.jdscommun.org/action/showPdf?pii=S2666910225000389Direct OA link when available
- Concepts
-
Computer science, Data integration, Data processing, Data science, Data mining, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408348705 |
|---|---|
| doi | https://doi.org/10.3168/jdsc.2024-0723 |
| ids.doi | https://doi.org/10.3168/jdsc.2024-0723 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40458161 |
| ids.openalex | https://openalex.org/W4408348705 |
| fwci | 38.15090208 |
| type | article |
| title | Data processing techniques to improve data integration from dairy farms |
| biblio.issue | 3 |
| biblio.volume | 6 |
| biblio.last_page | 344 |
| biblio.first_page | 339 |
| topics[0].id | https://openalex.org/T10594 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9884999990463257 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic and phenotypic traits in livestock |
| topics[1].id | https://openalex.org/T12365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9646000266075134 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1103 |
| topics[1].subfield.display_name | Animal Science and Zoology |
| topics[1].display_name | Effects of Environmental Stressors on Livestock |
| topics[2].id | https://openalex.org/T13358 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9516000151634216 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1102 |
| topics[2].subfield.display_name | Agronomy and Crop Science |
| topics[2].display_name | Livestock Management and Performance Improvement |
| is_xpac | False |
| apc_list.value | 1275 |
| apc_list.currency | USD |
| apc_list.value_usd | 1275 |
| apc_paid.value | 1275 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1275 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5119565725326538 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C72634772 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49011000990867615 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q386824 |
| concepts[1].display_name | Data integration |
| concepts[2].id | https://openalex.org/C138827492 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4249998927116394 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6661985 |
| concepts[2].display_name | Data processing |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3603188991546631 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.22594726085662842 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C77088390 |
| concepts[5].level | 1 |
| concepts[5].score | 0.15015316009521484 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[5].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5119565725326538 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-integration |
| keywords[1].score | 0.49011000990867615 |
| keywords[1].display_name | Data integration |
| keywords[2].id | https://openalex.org/keywords/data-processing |
| keywords[2].score | 0.4249998927116394 |
| keywords[2].display_name | Data processing |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.3603188991546631 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.22594726085662842 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/database |
| keywords[5].score | 0.15015316009521484 |
| keywords[5].display_name | Database |
| language | en |
| locations[0].id | doi:10.3168/jdsc.2024-0723 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210239985 |
| locations[0].source.issn | 2666-9102 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2666-9102 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JDS Communications |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.jdscommun.org/action/showPdf?pii=S2666910225000389 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JDS Communications |
| locations[0].landing_page_url | https://doi.org/10.3168/jdsc.2024-0723 |
| locations[1].id | pmid:40458161 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JDS communications |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40458161 |
| locations[2].id | pmh:oai:doaj.org/article:abdce78fc6b142dfa87df41a669aa5f2 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JDS Communications, Vol 6, Iss 3, Pp 339-344 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/abdce78fc6b142dfa87df41a669aa5f2 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12126813 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | JDS Commun |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12126813 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5047718261 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0336-8295 |
| authorships[0].author.display_name | Jacquelyn P. Boerman |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| authorships[0].institutions[0].id | https://openalex.org/I219193219 |
| authorships[0].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Purdue University West Lafayette |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jacquelyn P. Boerman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| authorships[1].author.id | https://openalex.org/A5050987254 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5819-0922 |
| authorships[1].author.display_name | Luiz F. Brito |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| authorships[1].institutions[0].id | https://openalex.org/I219193219 |
| authorships[1].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Purdue University West Lafayette |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luiz F. Brito |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| authorships[2].author.id | https://openalex.org/A5039651599 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0853-8468 |
| authorships[2].author.display_name | Maria E. Montes |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| authorships[2].institutions[0].id | https://openalex.org/I219193219 |
| authorships[2].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Purdue University West Lafayette |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Maria E. Montes |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| authorships[3].author.id | https://openalex.org/A5011683635 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-9561-2625 |
| authorships[3].author.display_name | Jacob M Maskal |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| authorships[3].institutions[0].id | https://openalex.org/I219193219 |
| authorships[3].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Purdue University West Lafayette |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jacob M. Maskal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 |
| authorships[4].author.id | https://openalex.org/A5022515367 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4027-2417 |
| authorships[4].author.display_name | Jarrod Doucette |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[4].affiliations[0].raw_affiliation_string | Agriculture Data Services, Purdue University, West Lafayette, IN 47907 |
| authorships[4].institutions[0].id | https://openalex.org/I219193219 |
| authorships[4].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Purdue University West Lafayette |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jarrod Doucette |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Agriculture Data Services, Purdue University, West Lafayette, IN 47907 |
| authorships[5].author.id | https://openalex.org/A5075599127 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4697-7522 |
| authorships[5].author.display_name | Kirby Kalbaugh |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[5].affiliations[0].raw_affiliation_string | Agriculture Data Services, Purdue University, West Lafayette, IN 47907 |
| authorships[5].institutions[0].id | https://openalex.org/I219193219 |
| authorships[5].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Purdue University West Lafayette |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Kirby Kalbaugh |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Agriculture Data Services, Purdue University, West Lafayette, IN 47907 |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.jdscommun.org/action/showPdf?pii=S2666910225000389 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Data processing techniques to improve data integration from dairy farms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-09T23:09:16.995542 |
| primary_topic.id | https://openalex.org/T10594 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9884999990463257 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic and phenotypic traits in livestock |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W2126703991, https://openalex.org/W2610897791, https://openalex.org/W4366463707, https://openalex.org/W4402024459 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3168/jdsc.2024-0723 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210239985 |
| best_oa_location.source.issn | 2666-9102 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2666-9102 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JDS Communications |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.jdscommun.org/action/showPdf?pii=S2666910225000389 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JDS Communications |
| best_oa_location.landing_page_url | https://doi.org/10.3168/jdsc.2024-0723 |
| primary_location.id | doi:10.3168/jdsc.2024-0723 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210239985 |
| primary_location.source.issn | 2666-9102 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2666-9102 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JDS Communications |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.jdscommun.org/action/showPdf?pii=S2666910225000389 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JDS Communications |
| primary_location.landing_page_url | https://doi.org/10.3168/jdsc.2024-0723 |
| publication_date | 2025-03-12 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4366997484, https://openalex.org/W4402076976, https://openalex.org/W6796047122, https://openalex.org/W4223614721, https://openalex.org/W2910889509, https://openalex.org/W3008465359, https://openalex.org/W4384156571, https://openalex.org/W4320712531, https://openalex.org/W4392059212, https://openalex.org/W3037921969, https://openalex.org/W3143796132, https://openalex.org/W3163417097 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 64, 79, 88, 139, 195, 274, 326 |
| abstract_inverted_index.As | 63 |
| abstract_inverted_index.We | 285 |
| abstract_inverted_index.an | 150 |
| abstract_inverted_index.be | 114, 280 |
| abstract_inverted_index.by | 273, 282 |
| abstract_inverted_index.in | 33, 292, 329 |
| abstract_inverted_index.is | 7, 76, 255, 321 |
| abstract_inverted_index.of | 21, 66, 72, 81, 87, 157, 249, 276, 295, 315 |
| abstract_inverted_index.on | 3, 30, 61, 105 |
| abstract_inverted_index.or | 120 |
| abstract_inverted_index.to | 9, 13, 77, 116, 137, 173, 201, 323 |
| abstract_inverted_index.Our | 134 |
| abstract_inverted_index.The | 247 |
| abstract_inverted_index.and | 18, 24, 38, 52, 83, 97, 107, 160, 178, 186, 226, 235, 244, 262, 269, 288, 302, 307, 313 |
| abstract_inverted_index.are | 266 |
| abstract_inverted_index.can | 113, 132, 279 |
| abstract_inverted_index.due | 12 |
| abstract_inverted_index.end | 43 |
| abstract_inverted_index.for | 182, 257, 309 |
| abstract_inverted_index.per | 16 |
| abstract_inverted_index.the | 19, 58, 70, 85, 191, 238, 293, 330 |
| abstract_inverted_index.was | 136 |
| abstract_inverted_index.This | 163 |
| abstract_inverted_index.data | 1, 37, 47, 50, 59, 68, 89, 99, 102, 112, 130, 142, 147, 193, 204, 209, 223, 232, 242, 253, 297, 300, 317 |
| abstract_inverted_index.farm | 17, 192 |
| abstract_inverted_index.from | 45, 48, 57, 100, 251 |
| abstract_inverted_index.more | 14, 54, 126 |
| abstract_inverted_index.note | 75 |
| abstract_inverted_index.role | 328 |
| abstract_inverted_index.than | 128 |
| abstract_inverted_index.that | 26, 91, 124, 144, 278 |
| abstract_inverted_index.this | 73 |
| abstract_inverted_index.used | 104 |
| abstract_inverted_index.user | 189 |
| abstract_inverted_index.with | 216 |
| abstract_inverted_index.These | 207 |
| abstract_inverted_index.dairy | 4, 109, 259, 296, 331 |
| abstract_inverted_index.farm. | 62 |
| abstract_inverted_index.farms | 6 |
| abstract_inverted_index.field | 294 |
| abstract_inverted_index.goals | 271 |
| abstract_inverted_index.major | 327 |
| abstract_inverted_index.novel | 310 |
| abstract_inverted_index.steps | 211 |
| abstract_inverted_index.these | 67 |
| abstract_inverted_index.timed | 122 |
| abstract_inverted_index.users | 44, 172 |
| abstract_inverted_index.which | 265, 320 |
| abstract_inverted_index.(e.g., | 299 |
| abstract_inverted_index.Apache | 161 |
| abstract_inverted_index.Before | 188 |
| abstract_inverted_index.Siloed | 36 |
| abstract_inverted_index.Spark. | 162 |
| abstract_inverted_index.across | 318 |
| abstract_inverted_index.answer | 117 |
| abstract_inverted_index.cattle | 5, 260 |
| abstract_inverted_index.farms. | 110 |
| abstract_inverted_index.needed | 291 |
| abstract_inverted_index.result | 65 |
| abstract_inverted_index.robust | 241 |
| abstract_inverted_index.shared | 164 |
| abstract_inverted_index.traits | 277 |
| abstract_inverted_index.Python, | 159 |
| abstract_inverted_index.address | 213 |
| abstract_inverted_index.animals | 15, 32 |
| abstract_inverted_index.complex | 214, 267 |
| abstract_inverted_index.control | 304 |
| abstract_inverted_index.curated | 165 |
| abstract_inverted_index.dataset | 169 |
| abstract_inverted_index.develop | 138 |
| abstract_inverted_index.drawing | 53 |
| abstract_inverted_index.editing | 301 |
| abstract_inverted_index.enables | 145 |
| abstract_inverted_index.ensures | 240 |
| abstract_inverted_index.further | 289 |
| abstract_inverted_index.greater | 34 |
| abstract_inverted_index.insight | 127 |
| abstract_inverted_index.lacking | 40 |
| abstract_inverted_index.on-farm | 22 |
| abstract_inverted_index.playing | 325 |
| abstract_inverted_index.prevent | 42 |
| abstract_inverted_index.process | 80 |
| abstract_inverted_index.provide | 125 |
| abstract_inverted_index.quality | 95, 245, 303 |
| abstract_inverted_index.queried | 115 |
| abstract_inverted_index.reports | 123 |
| abstract_inverted_index.science | 298 |
| abstract_inverted_index.sensors | 23 |
| abstract_inverted_index.sources | 51, 103, 131, 254 |
| abstract_inverted_index.through | 149 |
| abstract_inverted_index.undergo | 194 |
| abstract_inverted_index.welfare | 261 |
| abstract_inverted_index.adoption | 20 |
| abstract_inverted_index.analysis | 185 |
| abstract_inverted_index.breeding | 270 |
| abstract_inverted_index.continue | 10, 324 |
| abstract_inverted_index.control, | 96 |
| abstract_inverted_index.curation | 210 |
| abstract_inverted_index.datasets | 250 |
| abstract_inverted_index.describe | 78 |
| abstract_inverted_index.designed | 200 |
| abstract_inverted_index.expected | 8, 322 |
| abstract_inverted_index.generate | 27, 121 |
| abstract_inverted_index.industry | 332 |
| abstract_inverted_index.leverage | 174 |
| abstract_inverted_index.measured | 281 |
| abstract_inverted_index.mitigate | 202 |
| abstract_inverted_index.multiple | 49 |
| abstract_inverted_index.obtained | 316 |
| abstract_inverted_index.parallel | 179 |
| abstract_inverted_index.performs | 94 |
| abstract_inverted_index.protocol | 199 |
| abstract_inverted_index.provide. | 133 |
| abstract_inverted_index.research | 141, 287 |
| abstract_inverted_index.rigorous | 196 |
| abstract_inverted_index.sensors. | 284 |
| abstract_inverted_index.singular | 129 |
| abstract_inverted_index.software | 220 |
| abstract_inverted_index.sources, | 217 |
| abstract_inverted_index.specific | 118 |
| abstract_inverted_index.Employing | 230 |
| abstract_inverted_index.cleaning, | 233 |
| abstract_inverted_index.collects, | 93 |
| abstract_inverted_index.combining | 46 |
| abstract_inverted_index.computing | 176 |
| abstract_inverted_index.designing | 82 |
| abstract_inverted_index.different | 252, 283 |
| abstract_inverted_index.disparate | 101 |
| abstract_inverted_index.ecosystem | 90, 153 |
| abstract_inverted_index.extensive | 168 |
| abstract_inverted_index.generated | 60 |
| abstract_inverted_index.improving | 258 |
| abstract_inverted_index.including | 218 |
| abstract_inverted_index.integrity | 205 |
| abstract_inverted_index.multitude | 275 |
| abstract_inverted_index.objective | 71, 135 |
| abstract_inverted_index.paramount | 256 |
| abstract_inverted_index.potential | 203 |
| abstract_inverted_index.questions | 119 |
| abstract_inverted_index.resources | 177 |
| abstract_inverted_index.retrieval | 224 |
| abstract_inverted_index.sensors), | 319 |
| abstract_inverted_index.standards | 308 |
| abstract_inverted_index.technical | 74 |
| abstract_inverted_index.Integrated | 111 |
| abstract_inverted_index.additional | 28 |
| abstract_inverted_index.assurance. | 246 |
| abstract_inverted_index.commercial | 108 |
| abstract_inverted_index.comprising | 154 |
| abstract_inverted_index.empowering | 171 |
| abstract_inverted_index.farm-level | 227 |
| abstract_inverted_index.frequency. | 35 |
| abstract_inverted_index.generation | 2 |
| abstract_inverted_index.identified | 286 |
| abstract_inverted_index.increasing | 11 |
| abstract_inverted_index.individual | 31 |
| abstract_inverted_index.influenced | 272 |
| abstract_inverted_index.integrated | 151 |
| abstract_inverted_index.integrates | 98 |
| abstract_inverted_index.management | 268 |
| abstract_inverted_index.meaningful | 55 |
| abstract_inverted_index.multistage | 197 |
| abstract_inverted_index.processing | 180 |
| abstract_inverted_index.production | 263 |
| abstract_inverted_index.references | 306 |
| abstract_inverted_index.validation | 236, 314 |
| abstract_inverted_index.variables, | 312 |
| abstract_inverted_index.JupyterHub, | 158 |
| abstract_inverted_index.Large-scale | 0 |
| abstract_inverted_index.challenges, | 69 |
| abstract_inverted_index.challenges. | 206 |
| abstract_inverted_index.conclusions | 56 |
| abstract_inverted_index.development | 86, 290 |
| abstract_inverted_index.distributed | 175 |
| abstract_inverted_index.documenting | 84 |
| abstract_inverted_index.efficiency, | 264 |
| abstract_inverted_index.environment | 166 |
| abstract_inverted_index.facilitates | 167 |
| abstract_inverted_index.information | 29 |
| abstract_inverted_index.integration | 248 |
| abstract_inverted_index.open-source | 155 |
| abstract_inverted_index.operational | 228 |
| abstract_inverted_index.procedures, | 305 |
| abstract_inverted_index.variability | 215 |
| abstract_inverted_index.capabilities | 181 |
| abstract_inverted_index.consumption, | 170 |
| abstract_inverted_index.disruptions, | 225 |
| abstract_inverted_index.experimental | 106 |
| abstract_inverted_index.information, | 39 |
| abstract_inverted_index.integration. | 187 |
| abstract_inverted_index.intermittent | 222 |
| abstract_inverted_index.sensor-based | 311 |
| abstract_inverted_index.technologies | 25, 156 |
| abstract_inverted_index.accessibility | 148 |
| abstract_inverted_index.automatically | 92 |
| abstract_inverted_index.collaborative | 140 |
| abstract_inverted_index.comprehensive | 146, 208 |
| abstract_inverted_index.computational | 152 |
| abstract_inverted_index.multi-dataset | 184 |
| abstract_inverted_index.preprocessing | 198 |
| abstract_inverted_index.sophisticated | 183, 231 |
| abstract_inverted_index.accessibility, | 190 |
| abstract_inverted_index.contingencies. | 229 |
| abstract_inverted_index.infrastructure | 143, 239 |
| abstract_inverted_index.methodologies, | 237 |
| abstract_inverted_index.modifications, | 221 |
| abstract_inverted_index.systematically | 212 |
| abstract_inverted_index.standardization | 243 |
| abstract_inverted_index.sustainability. | 333 |
| abstract_inverted_index.transformation, | 234 |
| abstract_inverted_index.vendor-specific | 219 |
| abstract_inverted_index.interoperability, | 41 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.99242369 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |