Dataset: Fourier analysis to detect phenological cycles using tropical field data and simulations Article Swipe
YOU?
·
· 2016
· Open Access
·
Data to accompany manuscript Bush et al. Accepted in Methods in Ecology and Evolution October 2016. Fourier analysis to detect phenological cycles using tropical field data and simulations. Abstract for the publication is: 1.Changes in phenology are an inevitable result of climate change, and will have wide-reaching impacts on species, ecosystems, human society and even feedback onto climate. Accurate understanding of phenology is important to adapt to and mitigate such changes. However, analysis of phenology globally has been constrained by lack of data, dependence on geographically limited, non-circular indicators and lack of power in statistical analyses. \n2.\tTo address these challenges, especially for the study of tropical phenology, we developed a flexible and robust analytical approach - using Fourier analysis with confidence intervals - to objectively and quantitatively describe long-term observational phenology data even when data may be noisy. We then tested the power of this approach to detect regular cycles under different scenarios of data noise and length using both simulated and field data. \n3.\tWe use Fourier analysis to quantify flowering phenology from newly available data for 856 individual plants of 70 species observed monthly since 1986 at Lopé National Park, Gabon. After applying a confidence test, we find that 59% of the individuals have regular flowering cycles, and 88% species flower annually. We find time series length to be a significant predictor of the likelihood of confidently detecting a regular cycle from the data. Using simulated data we find that cycle regularity has a greater impact on detecting phenology than event detectability. Power analysis of the Lopé field data shows that at least six years of data are needed for confident detection of the least noisy species, but this varies and is often greater than 20 years for the most noisy species. \n4.\tThere are now a number of large phenology datasets from the tropics, from which insights into current regional and global changes may be gained, if flexible and quantitative analytical approaches are used. However consistent long-term data collection is costly and requires much effort. We provide support for the importance of such research and give suggestions as to how to avoid erroneous interpretation of shorter length datasets and maximize returns from long-term observational studies.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- http://hdl.handle.net/11667/83
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2567344125
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2567344125Canonical identifier for this work in OpenAlex
- Title
-
Dataset: Fourier analysis to detect phenological cycles using tropical field data and simulationsWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-11-03Full publication date if available
- Authors
-
Emma R. Bush, Katharine Abernethy, Kathryn J. Jeffery, Caroline E. G. Tutin, Lee White, Edmond Dimoto, Jean‐Thoussaint Dikangadissi, Alistair S. Jump, Nils BunnefeldList of authors in order
- Landing page
-
https://hdl.handle.net/11667/83Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11667/83Direct OA link when available
- Concepts
-
Phenology, Field (mathematics), Climatology, Fourier transform, Remote sensing, Environmental science, Geography, Mathematics, Geology, Biology, Ecology, Pure mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2567344125 |
|---|---|
| doi | |
| ids.mag | 2567344125 |
| ids.openalex | https://openalex.org/W2567344125 |
| fwci | |
| type | dataset |
| title | Dataset: Fourier analysis to detect phenological cycles using tropical field data and simulations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9666000008583069 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9642999768257141 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C51417038 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6657771468162537 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q272737 |
| concepts[0].display_name | Phenology |
| concepts[1].id | https://openalex.org/C9652623 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5125601291656494 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[1].display_name | Field (mathematics) |
| concepts[2].id | https://openalex.org/C49204034 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4479387402534485 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[2].display_name | Climatology |
| concepts[3].id | https://openalex.org/C102519508 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4396571218967438 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6520159 |
| concepts[3].display_name | Fourier transform |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4352811574935913 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C39432304 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4136728346347809 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[5].display_name | Environmental science |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.33806073665618896 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.23880267143249512 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.1777244508266449 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12146320939064026 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C18903297 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11026865243911743 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[10].display_name | Ecology |
| concepts[11].id | https://openalex.org/C202444582 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[11].display_name | Pure mathematics |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/phenology |
| keywords[0].score | 0.6657771468162537 |
| keywords[0].display_name | Phenology |
| keywords[1].id | https://openalex.org/keywords/field |
| keywords[1].score | 0.5125601291656494 |
| keywords[1].display_name | Field (mathematics) |
| keywords[2].id | https://openalex.org/keywords/climatology |
| keywords[2].score | 0.4479387402534485 |
| keywords[2].display_name | Climatology |
| keywords[3].id | https://openalex.org/keywords/fourier-transform |
| keywords[3].score | 0.4396571218967438 |
| keywords[3].display_name | Fourier transform |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.4352811574935913 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/environmental-science |
| keywords[5].score | 0.4136728346347809 |
| keywords[5].display_name | Environmental science |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.33806073665618896 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.23880267143249512 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.1777244508266449 |
| keywords[8].display_name | Geology |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.12146320939064026 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/ecology |
| keywords[10].score | 0.11026865243911743 |
| keywords[10].display_name | Ecology |
| language | en |
| locations[0].id | pmh:oai:datastorre.stir.ac.uk:11667/83 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196824 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DataSTORRE - Stirling Online Repository for Research Data (University of Stirling) |
| locations[0].source.host_organization | https://openalex.org/I12093191 |
| locations[0].source.host_organization_name | University of Stirling |
| locations[0].source.host_organization_lineage | https://openalex.org/I12093191 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | The Lopé longterm observational phenology study (1986-2016) |
| locations[0].landing_page_url | http://hdl.handle.net/11667/83 |
| locations[1].id | mag:2567344125 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://datastorre.stir.ac.uk/handle/11667/83 |
| authorships[0].author.id | https://openalex.org/A5063863033 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4036-125X |
| authorships[0].author.display_name | Emma R. Bush |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Emma R Bush |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5057843352 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0393-9342 |
| authorships[1].author.display_name | Katharine Abernethy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Katharine Abernethy |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114377137 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2632-0008 |
| authorships[2].author.display_name | Kathryn J. Jeffery |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kathryn Jane Jeffery |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020891417 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Caroline E. G. Tutin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Caroline Eg Tutin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5026288605 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4595-5981 |
| authorships[4].author.display_name | Lee White |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lee White |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5009256714 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Edmond Dimoto |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Edmond Dimoto |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5037986890 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jean‐Thoussaint Dikangadissi |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jean-Thoussaint Dikangadissi |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5031803026 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2167-6451 |
| authorships[7].author.display_name | Alistair S. Jump |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Alistair S Jump |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5035544300 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1349-4463 |
| authorships[8].author.display_name | Nils Bunnefeld |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Nils Bunnefeld |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/11667/83 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dataset: Fourier analysis to detect phenological cycles using tropical field data and simulations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9666000008583069 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2727758020, https://openalex.org/W89399927, https://openalex.org/W349715174, https://openalex.org/W239305102, https://openalex.org/W2502812970, https://openalex.org/W1556966044, https://openalex.org/W2787239194, https://openalex.org/W1902574538, https://openalex.org/W2547072141, https://openalex.org/W1195171055, https://openalex.org/W2245643808, https://openalex.org/W343974684, https://openalex.org/W257599664, https://openalex.org/W2953408893, https://openalex.org/W854336468, https://openalex.org/W3182184249, https://openalex.org/W2966540161, https://openalex.org/W3186505700, https://openalex.org/W2179967569, https://openalex.org/W2509989524 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:datastorre.stir.ac.uk:11667/83 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196824 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DataSTORRE - Stirling Online Repository for Research Data (University of Stirling) |
| best_oa_location.source.host_organization | https://openalex.org/I12093191 |
| best_oa_location.source.host_organization_name | University of Stirling |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I12093191 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | The Lopé longterm observational phenology study (1986-2016) |
| best_oa_location.landing_page_url | http://hdl.handle.net/11667/83 |
| primary_location.id | pmh:oai:datastorre.stir.ac.uk:11667/83 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196824 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DataSTORRE - Stirling Online Repository for Research Data (University of Stirling) |
| primary_location.source.host_organization | https://openalex.org/I12093191 |
| primary_location.source.host_organization_name | University of Stirling |
| primary_location.source.host_organization_lineage | https://openalex.org/I12093191 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | The Lopé longterm observational phenology study (1986-2016) |
| primary_location.landing_page_url | http://hdl.handle.net/11667/83 |
| publication_date | 2016-11-03 |
| publication_year | 2016 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 115, 122 |
| abstract_inverted_index.a | 109, 193, 219, 228, 243, 295 |
| abstract_inverted_index.20 | 285 |
| abstract_inverted_index.70 | 180 |
| abstract_inverted_index.We | 138, 212, 335 |
| abstract_inverted_index.an | 37 |
| abstract_inverted_index.as | 347 |
| abstract_inverted_index.at | 186, 261 |
| abstract_inverted_index.be | 136, 218, 314 |
| abstract_inverted_index.by | 79 |
| abstract_inverted_index.et | 5 |
| abstract_inverted_index.if | 316 |
| abstract_inverted_index.in | 8, 10, 34, 93 |
| abstract_inverted_index.is | 62, 281, 329 |
| abstract_inverted_index.of | 40, 60, 73, 81, 91, 104, 143, 153, 179, 200, 222, 225, 254, 265, 272, 297, 341, 354 |
| abstract_inverted_index.on | 48, 84, 246 |
| abstract_inverted_index.to | 1, 18, 64, 66, 123, 146, 167, 217, 348, 350 |
| abstract_inverted_index.we | 107, 196, 237 |
| abstract_inverted_index.59% | 199 |
| abstract_inverted_index.856 | 176 |
| abstract_inverted_index.88% | 208 |
| abstract_inverted_index.al. | 6 |
| abstract_inverted_index.and | 12, 26, 43, 53, 67, 89, 111, 125, 156, 161, 207, 280, 310, 318, 331, 344, 358 |
| abstract_inverted_index.are | 36, 267, 293, 322 |
| abstract_inverted_index.but | 277 |
| abstract_inverted_index.for | 29, 101, 175, 269, 287, 338 |
| abstract_inverted_index.has | 76, 242 |
| abstract_inverted_index.how | 349 |
| abstract_inverted_index.is: | 32 |
| abstract_inverted_index.may | 135, 313 |
| abstract_inverted_index.now | 294 |
| abstract_inverted_index.six | 263 |
| abstract_inverted_index.the | 30, 102, 141, 201, 223, 232, 255, 273, 288, 302, 339 |
| abstract_inverted_index.use | 164 |
| abstract_inverted_index.1986 | 185 |
| abstract_inverted_index.Bush | 4 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.been | 77 |
| abstract_inverted_index.both | 159 |
| abstract_inverted_index.data | 25, 131, 134, 154, 174, 236, 258, 266, 327 |
| abstract_inverted_index.even | 54, 132 |
| abstract_inverted_index.find | 197, 213, 238 |
| abstract_inverted_index.from | 171, 231, 301, 304, 361 |
| abstract_inverted_index.give | 345 |
| abstract_inverted_index.have | 45, 203 |
| abstract_inverted_index.into | 307 |
| abstract_inverted_index.lack | 80, 90 |
| abstract_inverted_index.most | 289 |
| abstract_inverted_index.much | 333 |
| abstract_inverted_index.onto | 56 |
| abstract_inverted_index.such | 69, 342 |
| abstract_inverted_index.than | 249, 284 |
| abstract_inverted_index.that | 198, 239, 260 |
| abstract_inverted_index.then | 139 |
| abstract_inverted_index.this | 144, 278 |
| abstract_inverted_index.time | 214 |
| abstract_inverted_index.when | 133 |
| abstract_inverted_index.will | 44 |
| abstract_inverted_index.with | 119 |
| abstract_inverted_index.2016. | 15 |
| abstract_inverted_index.After | 191 |
| abstract_inverted_index.Lopé | 187, 256 |
| abstract_inverted_index.Park, | 189 |
| abstract_inverted_index.Power | 252 |
| abstract_inverted_index.Using | 234 |
| abstract_inverted_index.adapt | 65 |
| abstract_inverted_index.avoid | 351 |
| abstract_inverted_index.cycle | 230, 240 |
| abstract_inverted_index.data, | 82 |
| abstract_inverted_index.data. | 233 |
| abstract_inverted_index.event | 250 |
| abstract_inverted_index.field | 24, 162, 257 |
| abstract_inverted_index.human | 51 |
| abstract_inverted_index.large | 298 |
| abstract_inverted_index.least | 262, 274 |
| abstract_inverted_index.newly | 172 |
| abstract_inverted_index.noise | 155 |
| abstract_inverted_index.noisy | 275, 290 |
| abstract_inverted_index.often | 282 |
| abstract_inverted_index.power | 92, 142 |
| abstract_inverted_index.shows | 259 |
| abstract_inverted_index.since | 184 |
| abstract_inverted_index.study | 103 |
| abstract_inverted_index.test, | 195 |
| abstract_inverted_index.these | 98 |
| abstract_inverted_index.under | 150 |
| abstract_inverted_index.used. | 323 |
| abstract_inverted_index.using | 22, 116, 158 |
| abstract_inverted_index.which | 305 |
| abstract_inverted_index.years | 264, 286 |
| abstract_inverted_index.Gabon. | 190 |
| abstract_inverted_index.costly | 330 |
| abstract_inverted_index.cycles | 21, 149 |
| abstract_inverted_index.detect | 19, 147 |
| abstract_inverted_index.flower | 210 |
| abstract_inverted_index.global | 311 |
| abstract_inverted_index.impact | 245 |
| abstract_inverted_index.length | 157, 216, 356 |
| abstract_inverted_index.needed | 268 |
| abstract_inverted_index.noisy. | 137 |
| abstract_inverted_index.number | 296 |
| abstract_inverted_index.plants | 178 |
| abstract_inverted_index.result | 39 |
| abstract_inverted_index.robust | 112 |
| abstract_inverted_index.series | 215 |
| abstract_inverted_index.tested | 140 |
| abstract_inverted_index.varies | 279 |
| abstract_inverted_index.Ecology | 11 |
| abstract_inverted_index.Fourier | 16, 117, 165 |
| abstract_inverted_index.However | 324 |
| abstract_inverted_index.Methods | 9 |
| abstract_inverted_index.October | 14 |
| abstract_inverted_index.address | 97 |
| abstract_inverted_index.change, | 42 |
| abstract_inverted_index.changes | 312 |
| abstract_inverted_index.climate | 41 |
| abstract_inverted_index.current | 308 |
| abstract_inverted_index.cycles, | 206 |
| abstract_inverted_index.effort. | 334 |
| abstract_inverted_index.gained, | 315 |
| abstract_inverted_index.greater | 244, 283 |
| abstract_inverted_index.impacts | 47 |
| abstract_inverted_index.monthly | 183 |
| abstract_inverted_index.provide | 336 |
| abstract_inverted_index.regular | 148, 204, 229 |
| abstract_inverted_index.returns | 360 |
| abstract_inverted_index.shorter | 355 |
| abstract_inverted_index.society | 52 |
| abstract_inverted_index.species | 181, 209 |
| abstract_inverted_index.support | 337 |
| abstract_inverted_index.Abstract | 28 |
| abstract_inverted_index.Accepted | 7 |
| abstract_inverted_index.Accurate | 58 |
| abstract_inverted_index.However, | 71 |
| abstract_inverted_index.National | 188 |
| abstract_inverted_index.analysis | 17, 72, 118, 166, 253 |
| abstract_inverted_index.applying | 192 |
| abstract_inverted_index.approach | 114, 145 |
| abstract_inverted_index.changes. | 70 |
| abstract_inverted_index.climate. | 57 |
| abstract_inverted_index.datasets | 300, 357 |
| abstract_inverted_index.describe | 127 |
| abstract_inverted_index.feedback | 55 |
| abstract_inverted_index.flexible | 110, 317 |
| abstract_inverted_index.globally | 75 |
| abstract_inverted_index.insights | 306 |
| abstract_inverted_index.limited, | 86 |
| abstract_inverted_index.maximize | 359 |
| abstract_inverted_index.mitigate | 68 |
| abstract_inverted_index.observed | 182 |
| abstract_inverted_index.quantify | 168 |
| abstract_inverted_index.regional | 309 |
| abstract_inverted_index.requires | 332 |
| abstract_inverted_index.research | 343 |
| abstract_inverted_index.species, | 49, 276 |
| abstract_inverted_index.species. | 291 |
| abstract_inverted_index.studies. | 364 |
| abstract_inverted_index.tropical | 23, 105 |
| abstract_inverted_index.tropics, | 303 |
| abstract_inverted_index.1.Changes | 33 |
| abstract_inverted_index.Evolution | 13 |
| abstract_inverted_index.accompany | 2 |
| abstract_inverted_index.analyses. | 95 |
| abstract_inverted_index.annually. | 211 |
| abstract_inverted_index.available | 173 |
| abstract_inverted_index.confident | 270 |
| abstract_inverted_index.detecting | 227, 247 |
| abstract_inverted_index.detection | 271 |
| abstract_inverted_index.developed | 108 |
| abstract_inverted_index.different | 151 |
| abstract_inverted_index.erroneous | 352 |
| abstract_inverted_index.flowering | 169, 205 |
| abstract_inverted_index.important | 63 |
| abstract_inverted_index.intervals | 121 |
| abstract_inverted_index.long-term | 128, 326, 362 |
| abstract_inverted_index.phenology | 35, 61, 74, 130, 170, 248, 299 |
| abstract_inverted_index.predictor | 221 |
| abstract_inverted_index.scenarios | 152 |
| abstract_inverted_index.simulated | 160, 235 |
| abstract_inverted_index.analytical | 113, 320 |
| abstract_inverted_index.approaches | 321 |
| abstract_inverted_index.collection | 328 |
| abstract_inverted_index.confidence | 120, 194 |
| abstract_inverted_index.consistent | 325 |
| abstract_inverted_index.dependence | 83 |
| abstract_inverted_index.especially | 100 |
| abstract_inverted_index.importance | 340 |
| abstract_inverted_index.indicators | 88 |
| abstract_inverted_index.individual | 177 |
| abstract_inverted_index.inevitable | 38 |
| abstract_inverted_index.likelihood | 224 |
| abstract_inverted_index.manuscript | 3 |
| abstract_inverted_index.phenology, | 106 |
| abstract_inverted_index.regularity | 241 |
| abstract_inverted_index.challenges, | 99 |
| abstract_inverted_index.confidently | 226 |
| abstract_inverted_index.constrained | 78 |
| abstract_inverted_index.ecosystems, | 50 |
| abstract_inverted_index.individuals | 202 |
| abstract_inverted_index.objectively | 124 |
| abstract_inverted_index.publication | 31 |
| abstract_inverted_index.significant | 220 |
| abstract_inverted_index.statistical | 94 |
| abstract_inverted_index.suggestions | 346 |
| abstract_inverted_index.non-circular | 87 |
| abstract_inverted_index.phenological | 20 |
| abstract_inverted_index.quantitative | 319 |
| abstract_inverted_index.simulations. | 27 |
| abstract_inverted_index. \n2.\tTo | 96 |
| abstract_inverted_index.observational | 129, 363 |
| abstract_inverted_index.understanding | 59 |
| abstract_inverted_index.wide-reaching | 46 |
| abstract_inverted_index.detectability. | 251 |
| abstract_inverted_index.geographically | 85 |
| abstract_inverted_index.interpretation | 353 |
| abstract_inverted_index.quantitatively | 126 |
| abstract_inverted_index. \n4.\tThere | 292 |
| abstract_inverted_index.data. \n3.\tWe | 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |