Dataset of networks used in assessing the Bayan algorithm for community detection Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.22442785.v2
This dataset contains a range of randomly generated networks (random graphs) from a study on community detection. In total there are 520 network files. This includes 500 LFR graphs, 10 Erdos-Renyi graphs, and 10 Barabasi-Albert graphs as described in the article linked below this description. Each network is provided in .gml format. This dataset is provided under a CC BY-NC-SA Creative Commons v 4.0 license (Attribution-NonCommercial-ShareAlike). This means that other individuals may remix, tweak, and build upon these data non-commercially, as long as they provide citations to this data repository (https://doi.org/10.6084/m9.figshare.22442785) and the reference article listed below (http://dx.doi.org/10.48550/arXiv.2209.04562), and license the new creations under the identical terms. For more information about the data, one may refer to the article below: Aref, Samin, Hriday Chheda, and Mahdi Mostajabdaveh. "The Bayan Algorithm: Detecting Communities in Networks Through Exact and Approximate Optimization of Modularity." arXiv preprint arXiv:2209.04562 (2022).
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.22442785.v2
- OA Status
- gold
- References
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394079026
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394079026Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.22442785.v2Digital Object Identifier
- Title
-
Dataset of networks used in assessing the Bayan algorithm for community detectionWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Samin Aref, Hriday Chheda, Mahdi MostajabdavehList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.22442785.v2Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.22442785.v2Direct OA link when available
- Concepts
-
Computer science, Algorithm, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
1Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394079026 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.22442785.v2 |
| ids.doi | https://doi.org/10.6084/m9.figshare.22442785.v2 |
| ids.openalex | https://openalex.org/W4394079026 |
| fwci | |
| type | dataset |
| title | Dataset of networks used in assessing the Bayan algorithm for community detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10637 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8043000102043152 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Clustering Algorithms Research |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.7656999826431274 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7576000094413757 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5294477939605713 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4262586236000061 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C124101348 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4097834825515747 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[2].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5294477939605713 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.4262586236000061 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/data-mining |
| keywords[2].score | 0.4097834825515747 |
| keywords[2].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.22442785.v2 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.22442785.v2 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5067809445 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5870-9253 |
| authorships[0].author.display_name | Samin Aref |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Samin Aref |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5036418721 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9049-0255 |
| authorships[1].author.display_name | Hriday Chheda |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hriday Chheda |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5042614566 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2816-909X |
| authorships[2].author.display_name | Mahdi Mostajabdaveh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mahdi Mostajabdaveh |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.22442785.v2 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Dataset of networks used in assessing the Bayan algorithm for community detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10637 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8043000102043152 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Clustering Algorithms Research |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2051487156, https://openalex.org/W2073681303, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.22442785.v2 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.22442785.v2 |
| primary_location.id | doi:10.6084/m9.figshare.22442785.v2 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.22442785.v2 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W4295695453 |
| referenced_works_count | 1 |
| abstract_inverted_index.a | 3, 12, 58 |
| abstract_inverted_index.v | 63 |
| abstract_inverted_index.10 | 29, 33 |
| abstract_inverted_index.CC | 59 |
| abstract_inverted_index.In | 17 |
| abstract_inverted_index.as | 36, 81, 83 |
| abstract_inverted_index.in | 38, 49, 133 |
| abstract_inverted_index.is | 47, 55 |
| abstract_inverted_index.of | 5, 140 |
| abstract_inverted_index.on | 14 |
| abstract_inverted_index.to | 87, 117 |
| abstract_inverted_index.4.0 | 64 |
| abstract_inverted_index.500 | 26 |
| abstract_inverted_index.520 | 21 |
| abstract_inverted_index.For | 108 |
| abstract_inverted_index.LFR | 27 |
| abstract_inverted_index.and | 32, 75, 92, 99, 125, 137 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.may | 72, 115 |
| abstract_inverted_index.new | 102 |
| abstract_inverted_index.one | 114 |
| abstract_inverted_index.the | 39, 93, 101, 105, 112, 118 |
| abstract_inverted_index."The | 128 |
| abstract_inverted_index..gml | 50 |
| abstract_inverted_index.<br> | 52 |
| abstract_inverted_index.Each | 45 |
| abstract_inverted_index.This | 0, 24, 53, 67 |
| abstract_inverted_index.data | 79, 89 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.long | 82 |
| abstract_inverted_index.more | 109 |
| abstract_inverted_index.that | 69 |
| abstract_inverted_index.they | 84 |
| abstract_inverted_index.this | 43, 88 |
| abstract_inverted_index.upon | 77 |
| abstract_inverted_index.Aref, | 121 |
| abstract_inverted_index.Bayan | 129 |
| abstract_inverted_index.Exact | 136 |
| abstract_inverted_index.Mahdi | 126 |
| abstract_inverted_index.about | 111 |
| abstract_inverted_index.below | 42, 97 |
| abstract_inverted_index.build | 76 |
| abstract_inverted_index.data, | 113 |
| abstract_inverted_index.means | 68 |
| abstract_inverted_index.other | 70 |
| abstract_inverted_index.range | 4 |
| abstract_inverted_index.refer | 116 |
| abstract_inverted_index.study | 13 |
| abstract_inverted_index.there | 19 |
| abstract_inverted_index.these | 78 |
| abstract_inverted_index.total | 18 |
| abstract_inverted_index.under | 57, 104 |
| abstract_inverted_index.Hriday | 123 |
| abstract_inverted_index.Samin, | 122 |
| abstract_inverted_index.below: | 120 |
| abstract_inverted_index.files. | 23 |
| abstract_inverted_index.graphs | 35 |
| abstract_inverted_index.linked | 41 |
| abstract_inverted_index.listed | 96 |
| abstract_inverted_index.remix, | 73 |
| abstract_inverted_index.terms. | 107 |
| abstract_inverted_index.tweak, | 74 |
| abstract_inverted_index.(2022). | 145 |
| abstract_inverted_index.(random | 9 |
| abstract_inverted_index.Chheda, | 124 |
| abstract_inverted_index.Commons | 62 |
| abstract_inverted_index.Through | 135 |
| abstract_inverted_index.article | 40, 95, 119 |
| abstract_inverted_index.dataset | 1, 54 |
| abstract_inverted_index.format. | 51 |
| abstract_inverted_index.graphs) | 10 |
| abstract_inverted_index.graphs, | 28, 31 |
| abstract_inverted_index.license | 65, 100 |
| abstract_inverted_index.network | 22, 46 |
| abstract_inverted_index.provide | 85 |
| abstract_inverted_index.BY-NC-SA | 60 |
| abstract_inverted_index.Creative | 61 |
| abstract_inverted_index.Networks | 134 |
| abstract_inverted_index.contains | 2 |
| abstract_inverted_index.includes | 25 |
| abstract_inverted_index.networks | 8 |
| abstract_inverted_index.preprint | 143 |
| abstract_inverted_index.provided | 48, 56 |
| abstract_inverted_index.randomly | 6 |
| abstract_inverted_index.<em>arXiv | 142 |
| abstract_inverted_index.Detecting | 131 |
| abstract_inverted_index.citations | 86 |
| abstract_inverted_index.community | 15 |
| abstract_inverted_index.creations | 103 |
| abstract_inverted_index.described | 37 |
| abstract_inverted_index.generated | 7 |
| abstract_inverted_index.identical | 106 |
| abstract_inverted_index.reference | 94 |
| abstract_inverted_index.Algorithm: | 130 |
| abstract_inverted_index.detection. | 16 |
| abstract_inverted_index.repository | 90 |
| abstract_inverted_index.Approximate | 138 |
| abstract_inverted_index.Communities | 132 |
| abstract_inverted_index.Erdos-Renyi | 30 |
| abstract_inverted_index.individuals | 71 |
| abstract_inverted_index.information | 110 |
| abstract_inverted_index.Modularity." | 141 |
| abstract_inverted_index.Optimization | 139 |
| abstract_inverted_index.description. | 44 |
| abstract_inverted_index.Mostajabdaveh. | 127 |
| abstract_inverted_index.Barabasi-Albert | 34 |
| abstract_inverted_index.non-commercially, | 80 |
| abstract_inverted_index.arXiv:2209.04562</em> | 144 |
| abstract_inverted_index.(Attribution-NonCommercial-ShareAlike). | 66 |
| abstract_inverted_index.(http://dx.doi.org/10.48550/arXiv.2209.04562), | 98 |
| abstract_inverted_index.(https://doi.org/10.6084/m9.figshare.22442785) | 91 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |