DC model for SiC MOSFETs using artificial neural network optimized by artificial bee colony algorithm Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1063/5.0072302
A DC model for silicon carbide (SiC) metal–oxide–semiconductor field effect transistors (MOSFETs) is proposed in this paper using a hybrid modeling method based on the artificial neural network and artificial bee colony (ABC) algorithm. A multi-layer perceptron neural network using the Levenberg–Marquardt (LM) method is applied to model SiC MOSFETs based on the data provided by the datasheet. The search strategy of artificial bees is improved based on the standard ABC, which enhances the search ability of the standard ABC. In view of the sensitivity of the LM method to the initial value, the improved ABC algorithm is adopted to help the neural network find initial weights and biases, which improves the accuracy of the modeling results. Comparing the modeling results with the I–V curves in the datasheet, the accuracy of the DC model is verified under different temperatures. In addition, the small signal parameters gm and gd that are not exposed in the training process also fit well with the datasheet, which fully demonstrates the feasibility of this hybrid modeling method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0072302
- https://aip.scitation.org/doi/pdf/10.1063/5.0072302
- OA Status
- gold
- Cited By
- 2
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3212082729
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3212082729Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0072302Digital Object Identifier
- Title
-
DC model for SiC MOSFETs using artificial neural network optimized by artificial bee colony algorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-01Full publication date if available
- Authors
-
Yuan Liu, Wanqin Zhang, Zeqi Zhu, Xiao Dong, Wanling DengList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0072302Publisher landing page
- PDF URL
-
https://aip.scitation.org/doi/pdf/10.1063/5.0072302Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aip.scitation.org/doi/pdf/10.1063/5.0072302Direct OA link when available
- Concepts
-
Datasheet, Artificial bee colony algorithm, Artificial neural network, Computer science, Silicon carbide, Perceptron, Multilayer perceptron, Algorithm, Hybrid algorithm (constraint satisfaction), Artificial intelligence, Materials science, Probabilistic logic, Constraint logic programming, Operating system, Constraint satisfaction, MetallurgyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3212082729 |
|---|---|
| doi | https://doi.org/10.1063/5.0072302 |
| ids.doi | https://doi.org/10.1063/5.0072302 |
| ids.mag | 3212082729 |
| ids.openalex | https://openalex.org/W3212082729 |
| fwci | 0.18336285 |
| type | article |
| title | DC model for SiC MOSFETs using artificial neural network optimized by artificial bee colony algorithm |
| biblio.issue | 11 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10361 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Silicon Carbide Semiconductor Technologies |
| topics[1].id | https://openalex.org/T10558 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advancements in Semiconductor Devices and Circuit Design |
| topics[2].id | https://openalex.org/T10623 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9810000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Thin-Film Transistor Technologies |
| is_xpac | False |
| apc_list.value | 1350 |
| apc_list.currency | USD |
| apc_list.value_usd | 1350 |
| apc_paid.value | 1350 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1350 |
| concepts[0].id | https://openalex.org/C2781384022 |
| concepts[0].level | 2 |
| concepts[0].score | 0.963926374912262 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1172383 |
| concepts[0].display_name | Datasheet |
| concepts[1].id | https://openalex.org/C97133563 |
| concepts[1].level | 2 |
| concepts[1].score | 0.808545708656311 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4801057 |
| concepts[1].display_name | Artificial bee colony algorithm |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7686651945114136 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5528513789176941 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2780722187 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5324192047119141 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q412356 |
| concepts[4].display_name | Silicon carbide |
| concepts[5].id | https://openalex.org/C60908668 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4894465506076813 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q690207 |
| concepts[5].display_name | Perceptron |
| concepts[6].id | https://openalex.org/C179717631 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4827350974082947 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2991667 |
| concepts[6].display_name | Multilayer perceptron |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45932668447494507 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C62469222 |
| concepts[8].level | 5 |
| concepts[8].score | 0.4489266276359558 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17092103 |
| concepts[8].display_name | Hybrid algorithm (constraint satisfaction) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3529402017593384 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C192562407 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2759018540382385 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[10].display_name | Materials science |
| concepts[11].id | https://openalex.org/C49937458 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[11].display_name | Probabilistic logic |
| concepts[12].id | https://openalex.org/C176783269 |
| concepts[12].level | 4 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5164378 |
| concepts[12].display_name | Constraint logic programming |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C44616089 |
| concepts[14].level | 3 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q30158686 |
| concepts[14].display_name | Constraint satisfaction |
| concepts[15].id | https://openalex.org/C191897082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[15].display_name | Metallurgy |
| keywords[0].id | https://openalex.org/keywords/datasheet |
| keywords[0].score | 0.963926374912262 |
| keywords[0].display_name | Datasheet |
| keywords[1].id | https://openalex.org/keywords/artificial-bee-colony-algorithm |
| keywords[1].score | 0.808545708656311 |
| keywords[1].display_name | Artificial bee colony algorithm |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.7686651945114136 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5528513789176941 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/silicon-carbide |
| keywords[4].score | 0.5324192047119141 |
| keywords[4].display_name | Silicon carbide |
| keywords[5].id | https://openalex.org/keywords/perceptron |
| keywords[5].score | 0.4894465506076813 |
| keywords[5].display_name | Perceptron |
| keywords[6].id | https://openalex.org/keywords/multilayer-perceptron |
| keywords[6].score | 0.4827350974082947 |
| keywords[6].display_name | Multilayer perceptron |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.45932668447494507 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/hybrid-algorithm |
| keywords[8].score | 0.4489266276359558 |
| keywords[8].display_name | Hybrid algorithm (constraint satisfaction) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3529402017593384 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/materials-science |
| keywords[10].score | 0.2759018540382385 |
| keywords[10].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1063/5.0072302 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S189917590 |
| locations[0].source.issn | 2158-3226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2158-3226 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | AIP Advances |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0072302 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Advances |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0072302 |
| locations[1].id | pmh:oai:doaj.org/article:5ecf265b3d00439ba3c0354692805523 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | AIP Advances, Vol 11, Iss 11, Pp 115219-115219-5 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/5ecf265b3d00439ba3c0354692805523 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100390897 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7289-2103 |
| authorships[0].author.display_name | Yuan Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I139024713 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Integrated Circuits, Guangdong University of Technology 1 , Guangzhou 510006, China |
| authorships[0].institutions[0].id | https://openalex.org/I139024713 |
| authorships[0].institutions[0].ror | https://ror.org/04azbjn80 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139024713 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangdong University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuan Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Integrated Circuits, Guangdong University of Technology 1 , Guangzhou 510006, China |
| authorships[1].author.id | https://openalex.org/A5015760377 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-1598-5187 |
| authorships[1].author.display_name | Wanqin Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I159948400 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronic Engineering, Jinan University 2 , Guangzhou 510630, China |
| authorships[1].institutions[0].id | https://openalex.org/I159948400 |
| authorships[1].institutions[0].ror | https://ror.org/02xe5ns62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I159948400 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jinan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wanqin Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronic Engineering, Jinan University 2 , Guangzhou 510630, China |
| authorships[2].author.id | https://openalex.org/A5102329774 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zeqi Zhu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139024713 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Integrated Circuits, Guangdong University of Technology 1 , Guangzhou 510006, China |
| authorships[2].institutions[0].id | https://openalex.org/I139024713 |
| authorships[2].institutions[0].ror | https://ror.org/04azbjn80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139024713 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangdong University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zeqi Zhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Integrated Circuits, Guangdong University of Technology 1 , Guangzhou 510006, China |
| authorships[3].author.id | https://openalex.org/A5082181196 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3593-2249 |
| authorships[3].author.display_name | Xiao Dong |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I159948400 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electronic Engineering, Jinan University 2 , Guangzhou 510630, China |
| authorships[3].institutions[0].id | https://openalex.org/I159948400 |
| authorships[3].institutions[0].ror | https://ror.org/02xe5ns62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I159948400 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jinan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiao Dong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electronic Engineering, Jinan University 2 , Guangzhou 510630, China |
| authorships[4].author.id | https://openalex.org/A5039736393 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4018-5578 |
| authorships[4].author.display_name | Wanling Deng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I159948400 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electronic Engineering, Jinan University 2 , Guangzhou 510630, China |
| authorships[4].institutions[0].id | https://openalex.org/I159948400 |
| authorships[4].institutions[0].ror | https://ror.org/02xe5ns62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I159948400 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Jinan University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wanling Deng |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Electronic Engineering, Jinan University 2 , Guangzhou 510630, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aip.scitation.org/doi/pdf/10.1063/5.0072302 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DC model for SiC MOSFETs using artificial neural network optimized by artificial bee colony algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10361 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Silicon Carbide Semiconductor Technologies |
| related_works | https://openalex.org/W3212082729, https://openalex.org/W2076543106, https://openalex.org/W2019891950, https://openalex.org/W2085842814, https://openalex.org/W2523437662, https://openalex.org/W4387048144, https://openalex.org/W2492135063, https://openalex.org/W2362514456, https://openalex.org/W2766585573, https://openalex.org/W4387490624 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1063/5.0072302 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S189917590 |
| best_oa_location.source.issn | 2158-3226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2158-3226 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | AIP Advances |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0072302 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Advances |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0072302 |
| primary_location.id | doi:10.1063/5.0072302 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S189917590 |
| primary_location.source.issn | 2158-3226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2158-3226 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | AIP Advances |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aip.scitation.org/doi/pdf/10.1063/5.0072302 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Advances |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0072302 |
| publication_date | 2021-11-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2029699094, https://openalex.org/W2012804470, https://openalex.org/W2936688174, https://openalex.org/W2463374179, https://openalex.org/W2166315761, https://openalex.org/W2604938527, https://openalex.org/W2018519785, https://openalex.org/W2064314320, https://openalex.org/W2137983211, https://openalex.org/W2236623899, https://openalex.org/W3005368022, https://openalex.org/W2160574494 |
| referenced_works_count | 12 |
| abstract_inverted_index.A | 0, 34 |
| abstract_inverted_index.a | 18 |
| abstract_inverted_index.DC | 1, 132 |
| abstract_inverted_index.In | 80, 139 |
| abstract_inverted_index.LM | 87 |
| abstract_inverted_index.by | 55 |
| abstract_inverted_index.gd | 147 |
| abstract_inverted_index.gm | 145 |
| abstract_inverted_index.in | 14, 125, 152 |
| abstract_inverted_index.is | 12, 44, 64, 97, 134 |
| abstract_inverted_index.of | 61, 76, 82, 85, 113, 130, 167 |
| abstract_inverted_index.on | 23, 51, 67 |
| abstract_inverted_index.to | 46, 89, 99 |
| abstract_inverted_index.ABC | 95 |
| abstract_inverted_index.SiC | 48 |
| abstract_inverted_index.The | 58 |
| abstract_inverted_index.and | 28, 107, 146 |
| abstract_inverted_index.are | 149 |
| abstract_inverted_index.bee | 30 |
| abstract_inverted_index.fit | 157 |
| abstract_inverted_index.for | 3 |
| abstract_inverted_index.not | 150 |
| abstract_inverted_index.the | 24, 40, 52, 56, 68, 73, 77, 83, 86, 90, 93, 101, 111, 114, 118, 122, 126, 128, 131, 141, 153, 160, 165 |
| abstract_inverted_index.(LM) | 42 |
| abstract_inverted_index.ABC, | 70 |
| abstract_inverted_index.ABC. | 79 |
| abstract_inverted_index.also | 156 |
| abstract_inverted_index.bees | 63 |
| abstract_inverted_index.data | 53 |
| abstract_inverted_index.find | 104 |
| abstract_inverted_index.help | 100 |
| abstract_inverted_index.that | 148 |
| abstract_inverted_index.this | 15, 168 |
| abstract_inverted_index.view | 81 |
| abstract_inverted_index.well | 158 |
| abstract_inverted_index.with | 121, 159 |
| abstract_inverted_index.(ABC) | 32 |
| abstract_inverted_index.(SiC) | 6 |
| abstract_inverted_index.I–V | 123 |
| abstract_inverted_index.based | 22, 50, 66 |
| abstract_inverted_index.field | 8 |
| abstract_inverted_index.fully | 163 |
| abstract_inverted_index.model | 2, 47, 133 |
| abstract_inverted_index.paper | 16 |
| abstract_inverted_index.small | 142 |
| abstract_inverted_index.under | 136 |
| abstract_inverted_index.using | 17, 39 |
| abstract_inverted_index.which | 71, 109, 162 |
| abstract_inverted_index.colony | 31 |
| abstract_inverted_index.curves | 124 |
| abstract_inverted_index.effect | 9 |
| abstract_inverted_index.hybrid | 19, 169 |
| abstract_inverted_index.method | 21, 43, 88 |
| abstract_inverted_index.neural | 26, 37, 102 |
| abstract_inverted_index.search | 59, 74 |
| abstract_inverted_index.signal | 143 |
| abstract_inverted_index.value, | 92 |
| abstract_inverted_index.MOSFETs | 49 |
| abstract_inverted_index.ability | 75 |
| abstract_inverted_index.adopted | 98 |
| abstract_inverted_index.applied | 45 |
| abstract_inverted_index.biases, | 108 |
| abstract_inverted_index.carbide | 5 |
| abstract_inverted_index.exposed | 151 |
| abstract_inverted_index.initial | 91, 105 |
| abstract_inverted_index.method. | 171 |
| abstract_inverted_index.network | 27, 38, 103 |
| abstract_inverted_index.process | 155 |
| abstract_inverted_index.results | 120 |
| abstract_inverted_index.silicon | 4 |
| abstract_inverted_index.weights | 106 |
| abstract_inverted_index.accuracy | 112, 129 |
| abstract_inverted_index.enhances | 72 |
| abstract_inverted_index.improved | 65, 94 |
| abstract_inverted_index.improves | 110 |
| abstract_inverted_index.modeling | 20, 115, 119, 170 |
| abstract_inverted_index.proposed | 13 |
| abstract_inverted_index.provided | 54 |
| abstract_inverted_index.results. | 116 |
| abstract_inverted_index.standard | 69, 78 |
| abstract_inverted_index.strategy | 60 |
| abstract_inverted_index.training | 154 |
| abstract_inverted_index.verified | 135 |
| abstract_inverted_index.(MOSFETs) | 11 |
| abstract_inverted_index.Comparing | 117 |
| abstract_inverted_index.addition, | 140 |
| abstract_inverted_index.algorithm | 96 |
| abstract_inverted_index.different | 137 |
| abstract_inverted_index.algorithm. | 33 |
| abstract_inverted_index.artificial | 25, 29, 62 |
| abstract_inverted_index.datasheet, | 127, 161 |
| abstract_inverted_index.datasheet. | 57 |
| abstract_inverted_index.parameters | 144 |
| abstract_inverted_index.perceptron | 36 |
| abstract_inverted_index.feasibility | 166 |
| abstract_inverted_index.multi-layer | 35 |
| abstract_inverted_index.sensitivity | 84 |
| abstract_inverted_index.transistors | 10 |
| abstract_inverted_index.demonstrates | 164 |
| abstract_inverted_index.temperatures. | 138 |
| abstract_inverted_index.Levenberg–Marquardt | 41 |
| abstract_inverted_index.metal–oxide–semiconductor | 7 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5039736393 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I159948400 |
| citation_normalized_percentile.value | 0.53076359 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |