DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit CNNs Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2306.15390
Neural architecture search (NAS) proves to be among the effective approaches for many tasks by generating an application-adaptive neural architecture, which is still challenged by high computational cost and memory consumption. At the same time, 1-bit convolutional neural networks (CNNs) with binary weights and activations show their potential for resource-limited embedded devices. One natural approach is to use 1-bit CNNs to reduce the computation and memory cost of NAS by taking advantage of the strengths of each in a unified framework, while searching the 1-bit CNNs is more challenging due to the more complicated processes involved. In this paper, we introduce Discrepant Child-Parent Neural Architecture Search (DCP-NAS) to efficiently search 1-bit CNNs, based on a new framework of searching the 1-bit model (Child) under the supervision of a real-valued model (Parent). Particularly, we first utilize a Parent model to calculate a tangent direction, based on which the tangent propagation method is introduced to search the optimized 1-bit Child. We further observe a coupling relationship between the weights and architecture parameters existing in such differentiable frameworks. To address the issue, we propose a decoupled optimization method to search an optimized architecture. Extensive experiments demonstrate that our DCP-NAS achieves much better results than prior arts on both CIFAR-10 and ImageNet datasets. In particular, the backbones achieved by our DCP-NAS achieve strong generalization performance on person re-identification and object detection.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2306.15390
- https://arxiv.org/pdf/2306.15390
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382491647
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382491647Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2306.15390Digital Object Identifier
- Title
-
DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit CNNsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-27Full publication date if available
- Authors
-
Yanjing Li, Sheng Xu, Xianbin Cao, Li’an Zhuo, Baochang Zhang, Tian Wang, Guodong GuoList of authors in order
- Landing page
-
https://arxiv.org/abs/2306.15390Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2306.15390Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2306.15390Direct OA link when available
- Concepts
-
Computer science, Convolutional neural network, Generalization, Artificial neural network, Architecture, Artificial intelligence, Binary number, Theoretical computer science, Machine learning, Computer engineering, Arithmetic, Mathematics, Art, Visual arts, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382491647 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2306.15390 |
| ids.doi | https://doi.org/10.48550/arxiv.2306.15390 |
| ids.openalex | https://openalex.org/W4382491647 |
| fwci | |
| type | preprint |
| title | DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit CNNs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T10812 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9922000169754028 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Human Pose and Action Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7734017372131348 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7039856910705566 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C177148314 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5756919384002686 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[2].display_name | Generalization |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.538267970085144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C123657996 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5375592112541199 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[4].display_name | Architecture |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5147857666015625 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C48372109 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4179733693599701 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[6].display_name | Binary number |
| concepts[7].id | https://openalex.org/C80444323 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40373948216438293 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[7].display_name | Theoretical computer science |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.366069495677948 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C113775141 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32828569412231445 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[9].display_name | Computer engineering |
| concepts[10].id | https://openalex.org/C94375191 |
| concepts[10].level | 1 |
| concepts[10].score | 0.14270156621932983 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[10].display_name | Arithmetic |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12445992231369019 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C142362112 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[12].display_name | Art |
| concepts[13].id | https://openalex.org/C153349607 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[13].display_name | Visual arts |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7734017372131348 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7039856910705566 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/generalization |
| keywords[2].score | 0.5756919384002686 |
| keywords[2].display_name | Generalization |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.538267970085144 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/architecture |
| keywords[4].score | 0.5375592112541199 |
| keywords[4].display_name | Architecture |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5147857666015625 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/binary-number |
| keywords[6].score | 0.4179733693599701 |
| keywords[6].display_name | Binary number |
| keywords[7].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[7].score | 0.40373948216438293 |
| keywords[7].display_name | Theoretical computer science |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.366069495677948 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/computer-engineering |
| keywords[9].score | 0.32828569412231445 |
| keywords[9].display_name | Computer engineering |
| keywords[10].id | https://openalex.org/keywords/arithmetic |
| keywords[10].score | 0.14270156621932983 |
| keywords[10].display_name | Arithmetic |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.12445992231369019 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2306.15390 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2306.15390 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2306.15390 |
| locations[1].id | doi:10.48550/arxiv.2306.15390 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2306.15390 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101989053 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0124-0463 |
| authorships[0].author.display_name | Yanjing Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Li, Yanjing |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100604665 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6507-9122 |
| authorships[1].author.display_name | Sheng Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Sheng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5038809760 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5042-7884 |
| authorships[2].author.display_name | Xianbin Cao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cao, Xianbin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020995962 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Li’an Zhuo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhuo, Li'an |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5015525872 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7396-6218 |
| authorships[4].author.display_name | Baochang Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Baochang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100428385 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8427-4495 |
| authorships[5].author.display_name | Tian Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wang, Tian |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5085022758 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9583-0055 |
| authorships[6].author.display_name | Guodong Guo |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Guo, Guodong |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2306.15390 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit CNNs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W3162204513, https://openalex.org/W4293226380, https://openalex.org/W2371138613, https://openalex.org/W2048963458, https://openalex.org/W43109613, https://openalex.org/W2359952343, https://openalex.org/W2239445980, https://openalex.org/W2080152487, https://openalex.org/W3083152911, https://openalex.org/W2766091780 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2306.15390 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2306.15390 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2306.15390 |
| primary_location.id | pmh:oai:arXiv.org:2306.15390 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2306.15390 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2306.15390 |
| publication_date | 2023-06-27 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 78, 114, 127, 135, 140, 161, 181 |
| abstract_inverted_index.At | 31 |
| abstract_inverted_index.In | 96, 209 |
| abstract_inverted_index.To | 175 |
| abstract_inverted_index.We | 158 |
| abstract_inverted_index.an | 16, 187 |
| abstract_inverted_index.be | 6 |
| abstract_inverted_index.by | 14, 24, 69, 214 |
| abstract_inverted_index.in | 77, 171 |
| abstract_inverted_index.is | 21, 55, 86, 150 |
| abstract_inverted_index.of | 67, 72, 75, 117, 126 |
| abstract_inverted_index.on | 113, 144, 203, 221 |
| abstract_inverted_index.to | 5, 56, 60, 90, 107, 138, 152, 185 |
| abstract_inverted_index.we | 99, 132, 179 |
| abstract_inverted_index.NAS | 68 |
| abstract_inverted_index.One | 52 |
| abstract_inverted_index.and | 28, 43, 64, 167, 206, 224 |
| abstract_inverted_index.due | 89 |
| abstract_inverted_index.for | 11, 48 |
| abstract_inverted_index.new | 115 |
| abstract_inverted_index.our | 194, 215 |
| abstract_inverted_index.the | 8, 32, 62, 73, 83, 91, 119, 124, 146, 154, 165, 177, 211 |
| abstract_inverted_index.use | 57 |
| abstract_inverted_index.CNNs | 59, 85 |
| abstract_inverted_index.arts | 202 |
| abstract_inverted_index.both | 204 |
| abstract_inverted_index.cost | 27, 66 |
| abstract_inverted_index.each | 76 |
| abstract_inverted_index.high | 25 |
| abstract_inverted_index.many | 12 |
| abstract_inverted_index.more | 87, 92 |
| abstract_inverted_index.much | 197 |
| abstract_inverted_index.same | 33 |
| abstract_inverted_index.show | 45 |
| abstract_inverted_index.such | 172 |
| abstract_inverted_index.than | 200 |
| abstract_inverted_index.that | 193 |
| abstract_inverted_index.this | 97 |
| abstract_inverted_index.with | 40 |
| abstract_inverted_index.(NAS) | 3 |
| abstract_inverted_index.1-bit | 35, 58, 84, 110, 120, 156 |
| abstract_inverted_index.CNNs, | 111 |
| abstract_inverted_index.among | 7 |
| abstract_inverted_index.based | 112, 143 |
| abstract_inverted_index.first | 133 |
| abstract_inverted_index.model | 121, 129, 137 |
| abstract_inverted_index.prior | 201 |
| abstract_inverted_index.still | 22 |
| abstract_inverted_index.tasks | 13 |
| abstract_inverted_index.their | 46 |
| abstract_inverted_index.time, | 34 |
| abstract_inverted_index.under | 123 |
| abstract_inverted_index.which | 20, 145 |
| abstract_inverted_index.while | 81 |
| abstract_inverted_index.(CNNs) | 39 |
| abstract_inverted_index.Child. | 157 |
| abstract_inverted_index.Neural | 0, 103 |
| abstract_inverted_index.Parent | 136 |
| abstract_inverted_index.Search | 105 |
| abstract_inverted_index.better | 198 |
| abstract_inverted_index.binary | 41 |
| abstract_inverted_index.issue, | 178 |
| abstract_inverted_index.memory | 29, 65 |
| abstract_inverted_index.method | 149, 184 |
| abstract_inverted_index.neural | 18, 37 |
| abstract_inverted_index.object | 225 |
| abstract_inverted_index.paper, | 98 |
| abstract_inverted_index.person | 222 |
| abstract_inverted_index.proves | 4 |
| abstract_inverted_index.reduce | 61 |
| abstract_inverted_index.search | 2, 109, 153, 186 |
| abstract_inverted_index.strong | 218 |
| abstract_inverted_index.taking | 70 |
| abstract_inverted_index.(Child) | 122 |
| abstract_inverted_index.DCP-NAS | 195, 216 |
| abstract_inverted_index.achieve | 217 |
| abstract_inverted_index.address | 176 |
| abstract_inverted_index.between | 164 |
| abstract_inverted_index.further | 159 |
| abstract_inverted_index.natural | 53 |
| abstract_inverted_index.observe | 160 |
| abstract_inverted_index.propose | 180 |
| abstract_inverted_index.results | 199 |
| abstract_inverted_index.tangent | 141, 147 |
| abstract_inverted_index.unified | 79 |
| abstract_inverted_index.utilize | 134 |
| abstract_inverted_index.weights | 42, 166 |
| abstract_inverted_index.CIFAR-10 | 205 |
| abstract_inverted_index.ImageNet | 207 |
| abstract_inverted_index.achieved | 213 |
| abstract_inverted_index.achieves | 196 |
| abstract_inverted_index.approach | 54 |
| abstract_inverted_index.coupling | 162 |
| abstract_inverted_index.devices. | 51 |
| abstract_inverted_index.embedded | 50 |
| abstract_inverted_index.existing | 170 |
| abstract_inverted_index.networks | 38 |
| abstract_inverted_index.(DCP-NAS) | 106 |
| abstract_inverted_index.(Parent). | 130 |
| abstract_inverted_index.Extensive | 190 |
| abstract_inverted_index.advantage | 71 |
| abstract_inverted_index.backbones | 212 |
| abstract_inverted_index.calculate | 139 |
| abstract_inverted_index.datasets. | 208 |
| abstract_inverted_index.decoupled | 182 |
| abstract_inverted_index.effective | 9 |
| abstract_inverted_index.framework | 116 |
| abstract_inverted_index.introduce | 100 |
| abstract_inverted_index.involved. | 95 |
| abstract_inverted_index.optimized | 155, 188 |
| abstract_inverted_index.potential | 47 |
| abstract_inverted_index.processes | 94 |
| abstract_inverted_index.searching | 82, 118 |
| abstract_inverted_index.strengths | 74 |
| abstract_inverted_index.Discrepant | 101 |
| abstract_inverted_index.approaches | 10 |
| abstract_inverted_index.challenged | 23 |
| abstract_inverted_index.detection. | 226 |
| abstract_inverted_index.direction, | 142 |
| abstract_inverted_index.framework, | 80 |
| abstract_inverted_index.generating | 15 |
| abstract_inverted_index.introduced | 151 |
| abstract_inverted_index.parameters | 169 |
| abstract_inverted_index.activations | 44 |
| abstract_inverted_index.challenging | 88 |
| abstract_inverted_index.complicated | 93 |
| abstract_inverted_index.computation | 63 |
| abstract_inverted_index.demonstrate | 192 |
| abstract_inverted_index.efficiently | 108 |
| abstract_inverted_index.experiments | 191 |
| abstract_inverted_index.frameworks. | 174 |
| abstract_inverted_index.particular, | 210 |
| abstract_inverted_index.performance | 220 |
| abstract_inverted_index.propagation | 148 |
| abstract_inverted_index.real-valued | 128 |
| abstract_inverted_index.supervision | 125 |
| abstract_inverted_index.Architecture | 104 |
| abstract_inverted_index.Child-Parent | 102 |
| abstract_inverted_index.architecture | 1, 168 |
| abstract_inverted_index.consumption. | 30 |
| abstract_inverted_index.optimization | 183 |
| abstract_inverted_index.relationship | 163 |
| abstract_inverted_index.Particularly, | 131 |
| abstract_inverted_index.architecture, | 19 |
| abstract_inverted_index.architecture. | 189 |
| abstract_inverted_index.computational | 26 |
| abstract_inverted_index.convolutional | 36 |
| abstract_inverted_index.differentiable | 173 |
| abstract_inverted_index.generalization | 219 |
| abstract_inverted_index.resource-limited | 49 |
| abstract_inverted_index.re-identification | 223 |
| abstract_inverted_index.application-adaptive | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile |