DDBot: Differentiable Physics-based Digging Robot for Unknown Granular Materials Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.17335
Automating the manipulation of granular materials poses significant challenges due to complex contact dynamics, unpredictable material properties, and intricate system states. Existing approaches often fail to achieve efficiency and accuracy in such tasks. To fill the research gap, this paper studies the small-scale and high-precision granular material digging task with unknown physical properties. A new framework, named differentiable digging robot (DDBot), is proposed to manipulate granular materials, including sand and soil. Specifically, we equip DDBot with a differentiable physics-based simulator, tailored for granular material manipulation, powered by GPU-accelerated parallel computing and automatic differentiation. DDBot can perform efficient differentiable system identification and high-precision digging skill optimisation for unknown granular materials, which is enabled by a differentiable skill-to-action mapping, a task-oriented demonstration method, gradient clipping and line search-based gradient descent. Experimental results show that DDBot can efficiently (converge within 5 to 20 minutes) identify unknown granular material dynamics and optimise digging skills, with high-precision results in zero-shot real-world deployments, highlighting its practicality. Benchmark results against state-of-the-art baselines also confirm the robustness and efficiency of DDBot in such digging tasks.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.17335
- https://arxiv.org/pdf/2510.17335
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415901673
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415901673Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.17335Digital Object Identifier
- Title
-
DDBot: Differentiable Physics-based Digging Robot for Unknown Granular MaterialsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-20Full publication date if available
- Authors
-
Xintong Yang, Max Wei, Yu‐Kun Lai, Ze JiList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.17335Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.17335Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.17335Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415901673 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.17335 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.17335 |
| ids.openalex | https://openalex.org/W4415901673 |
| fwci | |
| type | preprint |
| title | DDBot: Differentiable Physics-based Digging Robot for Unknown Granular Materials |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.17335 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.17335 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.17335 |
| locations[1].id | doi:10.48550/arxiv.2510.17335 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.17335 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5063751533 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7612-614X |
| authorships[0].author.display_name | Xintong Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Xintong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101937094 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7989-3881 |
| authorships[1].author.display_name | Max Wei |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wei, Minglun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067850699 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2094-5680 |
| authorships[2].author.display_name | Yu‐Kun Lai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lai, Yu-Kun |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068175770 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8968-9902 |
| authorships[3].author.display_name | Ze Ji |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ji, Ze |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.17335 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-22T00:00:00 |
| display_name | DDBot: Differentiable Physics-based Digging Robot for Unknown Granular Materials |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.17335 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.17335 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.17335 |
| primary_location.id | pmh:oai:arXiv.org:2510.17335 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.17335 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.17335 |
| publication_date | 2025-10-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 137 |
| abstract_inverted_index.A | 53 |
| abstract_inverted_index.a | 76, 113, 117 |
| abstract_inverted_index.20 | 139 |
| abstract_inverted_index.To | 33 |
| abstract_inverted_index.by | 86, 112 |
| abstract_inverted_index.in | 30, 153, 173 |
| abstract_inverted_index.is | 61, 110 |
| abstract_inverted_index.of | 3, 171 |
| abstract_inverted_index.to | 10, 25, 63, 138 |
| abstract_inverted_index.we | 72 |
| abstract_inverted_index.and | 17, 28, 43, 69, 90, 100, 123, 146, 169 |
| abstract_inverted_index.can | 94, 133 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 81, 105 |
| abstract_inverted_index.its | 158 |
| abstract_inverted_index.new | 54 |
| abstract_inverted_index.the | 1, 35, 41, 167 |
| abstract_inverted_index.also | 165 |
| abstract_inverted_index.fail | 24 |
| abstract_inverted_index.fill | 34 |
| abstract_inverted_index.gap, | 37 |
| abstract_inverted_index.line | 124 |
| abstract_inverted_index.sand | 68 |
| abstract_inverted_index.show | 130 |
| abstract_inverted_index.such | 31, 174 |
| abstract_inverted_index.task | 48 |
| abstract_inverted_index.that | 131 |
| abstract_inverted_index.this | 38 |
| abstract_inverted_index.with | 49, 75, 150 |
| abstract_inverted_index.DDBot | 74, 93, 132, 172 |
| abstract_inverted_index.equip | 73 |
| abstract_inverted_index.named | 56 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.paper | 39 |
| abstract_inverted_index.poses | 6 |
| abstract_inverted_index.robot | 59 |
| abstract_inverted_index.skill | 103 |
| abstract_inverted_index.soil. | 70 |
| abstract_inverted_index.which | 109 |
| abstract_inverted_index.system | 19, 98 |
| abstract_inverted_index.tasks. | 32, 176 |
| abstract_inverted_index.within | 136 |
| abstract_inverted_index.achieve | 26 |
| abstract_inverted_index.against | 162 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.confirm | 166 |
| abstract_inverted_index.contact | 12 |
| abstract_inverted_index.digging | 47, 58, 102, 148, 175 |
| abstract_inverted_index.enabled | 111 |
| abstract_inverted_index.method, | 120 |
| abstract_inverted_index.perform | 95 |
| abstract_inverted_index.powered | 85 |
| abstract_inverted_index.results | 129, 152, 161 |
| abstract_inverted_index.skills, | 149 |
| abstract_inverted_index.states. | 20 |
| abstract_inverted_index.studies | 40 |
| abstract_inverted_index.unknown | 50, 106, 142 |
| abstract_inverted_index.(DDBot), | 60 |
| abstract_inverted_index.Existing | 21 |
| abstract_inverted_index.accuracy | 29 |
| abstract_inverted_index.clipping | 122 |
| abstract_inverted_index.descent. | 127 |
| abstract_inverted_index.dynamics | 145 |
| abstract_inverted_index.gradient | 121, 126 |
| abstract_inverted_index.granular | 4, 45, 65, 82, 107, 143 |
| abstract_inverted_index.identify | 141 |
| abstract_inverted_index.mapping, | 116 |
| abstract_inverted_index.material | 15, 46, 83, 144 |
| abstract_inverted_index.minutes) | 140 |
| abstract_inverted_index.optimise | 147 |
| abstract_inverted_index.parallel | 88 |
| abstract_inverted_index.physical | 51 |
| abstract_inverted_index.proposed | 62 |
| abstract_inverted_index.research | 36 |
| abstract_inverted_index.tailored | 80 |
| abstract_inverted_index.(converge | 135 |
| abstract_inverted_index.Benchmark | 160 |
| abstract_inverted_index.automatic | 91 |
| abstract_inverted_index.baselines | 164 |
| abstract_inverted_index.computing | 89 |
| abstract_inverted_index.dynamics, | 13 |
| abstract_inverted_index.efficient | 96 |
| abstract_inverted_index.including | 67 |
| abstract_inverted_index.intricate | 18 |
| abstract_inverted_index.materials | 5 |
| abstract_inverted_index.zero-shot | 154 |
| abstract_inverted_index.Automating | 0 |
| abstract_inverted_index.approaches | 22 |
| abstract_inverted_index.challenges | 8 |
| abstract_inverted_index.efficiency | 27, 170 |
| abstract_inverted_index.framework, | 55 |
| abstract_inverted_index.manipulate | 64 |
| abstract_inverted_index.materials, | 66, 108 |
| abstract_inverted_index.real-world | 155 |
| abstract_inverted_index.robustness | 168 |
| abstract_inverted_index.simulator, | 79 |
| abstract_inverted_index.efficiently | 134 |
| abstract_inverted_index.properties, | 16 |
| abstract_inverted_index.properties. | 52 |
| abstract_inverted_index.significant | 7 |
| abstract_inverted_index.small-scale | 42 |
| abstract_inverted_index.Experimental | 128 |
| abstract_inverted_index.deployments, | 156 |
| abstract_inverted_index.highlighting | 157 |
| abstract_inverted_index.manipulation | 2 |
| abstract_inverted_index.optimisation | 104 |
| abstract_inverted_index.search-based | 125 |
| abstract_inverted_index.Specifically, | 71 |
| abstract_inverted_index.demonstration | 119 |
| abstract_inverted_index.manipulation, | 84 |
| abstract_inverted_index.physics-based | 78 |
| abstract_inverted_index.practicality. | 159 |
| abstract_inverted_index.task-oriented | 118 |
| abstract_inverted_index.unpredictable | 14 |
| abstract_inverted_index.differentiable | 57, 77, 97, 114 |
| abstract_inverted_index.high-precision | 44, 101, 151 |
| abstract_inverted_index.identification | 99 |
| abstract_inverted_index.GPU-accelerated | 87 |
| abstract_inverted_index.skill-to-action | 115 |
| abstract_inverted_index.differentiation. | 92 |
| abstract_inverted_index.state-of-the-art | 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |