De-noising of ECG Signal and QRS Detection Using Hilbert Transform and Adaptive Thresholding Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1016/j.protcy.2016.08.082
Electrocardiogram (ECG) is a primary diagnostic tool for cardiac disorders. During acquisition of ECG signals different noises like instrument noise, muscle noise, motion artifacts and baseline wander are frequently mixed with signals in real-time situation. The segmentation and detection of R peaks in the ECG is the initial steps in HRV analysis. In this paper, we employ the discrete wavelet transform to remove noise components of the time - frequency domain in order to enhance the ECG signal and the Hilbert transform with the adaptive thresholding technique used to explore an optimal combination to detect R-peaks more accurately. The proposed method is evaluated on ECG signals from MIT database. The experimental results of present method show better signal to noise ratio (SNR) with lower mean square error (MSE). To evaluate the quality of physiological information preserved in the enhanced ECG signal, the R-peak detection was also tested. The performance of the proposed method is found to be better in detecting R-peaks having sensitivity of 99.71% and the positive predictability of 99.72% respectively with less detection error rate of 0.52%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.protcy.2016.08.082
- OA Status
- diamond
- Cited By
- 101
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2522767410
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2522767410Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.protcy.2016.08.082Digital Object Identifier
- Title
-
De-noising of ECG Signal and QRS Detection Using Hilbert Transform and Adaptive ThresholdingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-01-01Full publication date if available
- Authors
-
Santanu Kumar Sahoo, Prativa Biswal, Tejaswini Das, Sukanta SabutList of authors in order
- Landing page
-
https://doi.org/10.1016/j.protcy.2016.08.082Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.protcy.2016.08.082Direct OA link when available
- Concepts
-
Thresholding, Artificial intelligence, Pattern recognition (psychology), SIGNAL (programming language), QRS complex, Computer science, Hilbert transform, Noise (video), Wavelet transform, Sensitivity (control systems), Discrete wavelet transform, Mathematics, Speech recognition, Wavelet, Computer vision, Engineering, Electronic engineering, Medicine, Filter (signal processing), Cardiology, Image (mathematics), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
101Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 10, 2023: 11, 2022: 12, 2021: 19Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2522767410 |
|---|---|
| doi | https://doi.org/10.1016/j.protcy.2016.08.082 |
| ids.doi | https://doi.org/10.1016/j.protcy.2016.08.082 |
| ids.mag | 2522767410 |
| ids.openalex | https://openalex.org/W2522767410 |
| fwci | 7.76614739 |
| type | article |
| title | De-noising of ECG Signal and QRS Detection Using Hilbert Transform and Adaptive Thresholding |
| biblio.issue | |
| biblio.volume | 25 |
| biblio.last_page | 75 |
| biblio.first_page | 68 |
| topics[0].id | https://openalex.org/T11021 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | ECG Monitoring and Analysis |
| topics[1].id | https://openalex.org/T11196 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Non-Invasive Vital Sign Monitoring |
| topics[2].id | https://openalex.org/T10429 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9940999746322632 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C191178318 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6799352169036865 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2256906 |
| concepts[0].display_name | Thresholding |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.639923095703125 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6105244159698486 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C2779843651 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5286754965782166 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[3].display_name | SIGNAL (programming language) |
| concepts[4].id | https://openalex.org/C111773187 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5158337950706482 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1969239 |
| concepts[4].display_name | QRS complex |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.513943612575531 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C28799612 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4953106939792633 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q685437 |
| concepts[6].display_name | Hilbert transform |
| concepts[7].id | https://openalex.org/C99498987 |
| concepts[7].level | 3 |
| concepts[7].score | 0.49504438042640686 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[7].display_name | Noise (video) |
| concepts[8].id | https://openalex.org/C196216189 |
| concepts[8].level | 3 |
| concepts[8].score | 0.46431422233581543 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[8].display_name | Wavelet transform |
| concepts[9].id | https://openalex.org/C21200559 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4586311876773834 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7451068 |
| concepts[9].display_name | Sensitivity (control systems) |
| concepts[10].id | https://openalex.org/C46286280 |
| concepts[10].level | 4 |
| concepts[10].score | 0.4562486410140991 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[10].display_name | Discrete wavelet transform |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.4205326735973358 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C28490314 |
| concepts[12].level | 1 |
| concepts[12].score | 0.41544926166534424 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[12].display_name | Speech recognition |
| concepts[13].id | https://openalex.org/C47432892 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3540334105491638 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[13].display_name | Wavelet |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.27913808822631836 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1734738051891327 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C24326235 |
| concepts[16].level | 1 |
| concepts[16].score | 0.09822356700897217 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q126095 |
| concepts[16].display_name | Electronic engineering |
| concepts[17].id | https://openalex.org/C71924100 |
| concepts[17].level | 0 |
| concepts[17].score | 0.06612136960029602 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[17].display_name | Medicine |
| concepts[18].id | https://openalex.org/C106131492 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[18].display_name | Filter (signal processing) |
| concepts[19].id | https://openalex.org/C164705383 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[19].display_name | Cardiology |
| concepts[20].id | https://openalex.org/C115961682 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[20].display_name | Image (mathematics) |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/thresholding |
| keywords[0].score | 0.6799352169036865 |
| keywords[0].display_name | Thresholding |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.639923095703125 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.6105244159698486 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.5286754965782166 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/qrs-complex |
| keywords[4].score | 0.5158337950706482 |
| keywords[4].display_name | QRS complex |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.513943612575531 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/hilbert-transform |
| keywords[6].score | 0.4953106939792633 |
| keywords[6].display_name | Hilbert transform |
| keywords[7].id | https://openalex.org/keywords/noise |
| keywords[7].score | 0.49504438042640686 |
| keywords[7].display_name | Noise (video) |
| keywords[8].id | https://openalex.org/keywords/wavelet-transform |
| keywords[8].score | 0.46431422233581543 |
| keywords[8].display_name | Wavelet transform |
| keywords[9].id | https://openalex.org/keywords/sensitivity |
| keywords[9].score | 0.4586311876773834 |
| keywords[9].display_name | Sensitivity (control systems) |
| keywords[10].id | https://openalex.org/keywords/discrete-wavelet-transform |
| keywords[10].score | 0.4562486410140991 |
| keywords[10].display_name | Discrete wavelet transform |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.4205326735973358 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/speech-recognition |
| keywords[12].score | 0.41544926166534424 |
| keywords[12].display_name | Speech recognition |
| keywords[13].id | https://openalex.org/keywords/wavelet |
| keywords[13].score | 0.3540334105491638 |
| keywords[13].display_name | Wavelet |
| keywords[14].id | https://openalex.org/keywords/computer-vision |
| keywords[14].score | 0.27913808822631836 |
| keywords[14].display_name | Computer vision |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.1734738051891327 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/electronic-engineering |
| keywords[16].score | 0.09822356700897217 |
| keywords[16].display_name | Electronic engineering |
| keywords[17].id | https://openalex.org/keywords/medicine |
| keywords[17].score | 0.06612136960029602 |
| keywords[17].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1016/j.protcy.2016.08.082 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898128736 |
| locations[0].source.issn | 2212-0173 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2212-0173 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Technology |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Technology |
| locations[0].landing_page_url | https://doi.org/10.1016/j.protcy.2016.08.082 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5076715812 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8324-3101 |
| authorships[0].author.display_name | Santanu Kumar Sahoo |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronics & Communication Engineering, ITER, SOA University, Bhubaneswar, Odisha 751030, India |
| authorships[0].institutions[0].id | https://openalex.org/I193073490 |
| authorships[0].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Santanu Sahoo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronics & Communication Engineering, ITER, SOA University, Bhubaneswar, Odisha 751030, India |
| authorships[1].author.id | https://openalex.org/A5058014987 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Prativa Biswal |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronics & Communication Engineering, ITER, SOA University, Bhubaneswar, Odisha 751030, India |
| authorships[1].institutions[0].id | https://openalex.org/I193073490 |
| authorships[1].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Prativa Biswal |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronics & Communication Engineering, ITER, SOA University, Bhubaneswar, Odisha 751030, India |
| authorships[2].author.id | https://openalex.org/A5068196964 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Tejaswini Das |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electronics & Communication Engineering, ITER, SOA University, Bhubaneswar, Odisha 751030, India |
| authorships[2].institutions[0].id | https://openalex.org/I193073490 |
| authorships[2].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tejaswini Das |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electronics & Communication Engineering, ITER, SOA University, Bhubaneswar, Odisha 751030, India |
| authorships[3].author.id | https://openalex.org/A5073398007 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2896-8331 |
| authorships[3].author.display_name | Sukanta Sabut |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electronics & Instrumentation Engineering, ITER, SOA University, Bhubaneswar, Odisha 751030, India |
| authorships[3].institutions[0].id | https://openalex.org/I193073490 |
| authorships[3].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Sukanta Sabut |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Electronics & Instrumentation Engineering, ITER, SOA University, Bhubaneswar, Odisha 751030, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.protcy.2016.08.082 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | De-noising of ECG Signal and QRS Detection Using Hilbert Transform and Adaptive Thresholding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11021 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | ECG Monitoring and Analysis |
| related_works | https://openalex.org/W2085790481, https://openalex.org/W2085792030, https://openalex.org/W1588899229, https://openalex.org/W2023142747, https://openalex.org/W2172291505, https://openalex.org/W2063036707, https://openalex.org/W2037009764, https://openalex.org/W2501033992, https://openalex.org/W2377605153, https://openalex.org/W2088723847 |
| cited_by_count | 101 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 12 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 19 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 11 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 13 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 14 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.protcy.2016.08.082 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898128736 |
| best_oa_location.source.issn | 2212-0173 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2212-0173 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.protcy.2016.08.082 |
| primary_location.id | doi:10.1016/j.protcy.2016.08.082 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898128736 |
| primary_location.source.issn | 2212-0173 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2212-0173 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Technology |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Technology |
| primary_location.landing_page_url | https://doi.org/10.1016/j.protcy.2016.08.082 |
| publication_date | 2016-01-01 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W2168028135, https://openalex.org/W2081419782, https://openalex.org/W6652714286, https://openalex.org/W2006467905, https://openalex.org/W2014283444, https://openalex.org/W2147926931, https://openalex.org/W2162273778, https://openalex.org/W2092816011, https://openalex.org/W2109896502, https://openalex.org/W6683949775, https://openalex.org/W2115340664, https://openalex.org/W1964348390, https://openalex.org/W2160182757, https://openalex.org/W2044225777, https://openalex.org/W2019885331, https://openalex.org/W2073806155, https://openalex.org/W289399453, https://openalex.org/W2042061780, https://openalex.org/W2079492280, https://openalex.org/W2161983973, https://openalex.org/W2044343650, https://openalex.org/W2104614052, https://openalex.org/W2154924564, https://openalex.org/W2163430278, https://openalex.org/W2103870502, https://openalex.org/W2008866051 |
| referenced_works_count | 26 |
| abstract_inverted_index.- | 68 |
| abstract_inverted_index.R | 40 |
| abstract_inverted_index.a | 3 |
| abstract_inverted_index.In | 52 |
| abstract_inverted_index.To | 128 |
| abstract_inverted_index.an | 90 |
| abstract_inverted_index.be | 156 |
| abstract_inverted_index.in | 32, 42, 49, 71, 136, 158 |
| abstract_inverted_index.is | 2, 45, 101, 153 |
| abstract_inverted_index.of | 12, 39, 65, 112, 132, 149, 163, 169, 177 |
| abstract_inverted_index.on | 103 |
| abstract_inverted_index.to | 61, 73, 88, 93, 118, 155 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.ECG | 13, 44, 76, 104, 139 |
| abstract_inverted_index.HRV | 50 |
| abstract_inverted_index.MIT | 107 |
| abstract_inverted_index.The | 35, 98, 109, 147 |
| abstract_inverted_index.and | 24, 37, 78, 165 |
| abstract_inverted_index.are | 27 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.the | 43, 46, 57, 66, 75, 79, 83, 130, 137, 141, 150, 166 |
| abstract_inverted_index.was | 144 |
| abstract_inverted_index.also | 145 |
| abstract_inverted_index.from | 106 |
| abstract_inverted_index.less | 173 |
| abstract_inverted_index.like | 17 |
| abstract_inverted_index.mean | 124 |
| abstract_inverted_index.more | 96 |
| abstract_inverted_index.rate | 176 |
| abstract_inverted_index.show | 115 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.time | 67 |
| abstract_inverted_index.tool | 6 |
| abstract_inverted_index.used | 87 |
| abstract_inverted_index.with | 30, 82, 122, 172 |
| abstract_inverted_index.(ECG) | 1 |
| abstract_inverted_index.(SNR) | 121 |
| abstract_inverted_index.error | 126, 175 |
| abstract_inverted_index.found | 154 |
| abstract_inverted_index.lower | 123 |
| abstract_inverted_index.mixed | 29 |
| abstract_inverted_index.noise | 63, 119 |
| abstract_inverted_index.order | 72 |
| abstract_inverted_index.peaks | 41 |
| abstract_inverted_index.ratio | 120 |
| abstract_inverted_index.steps | 48 |
| abstract_inverted_index.(MSE). | 127 |
| abstract_inverted_index.0.52%. | 178 |
| abstract_inverted_index.99.71% | 164 |
| abstract_inverted_index.99.72% | 170 |
| abstract_inverted_index.During | 10 |
| abstract_inverted_index.R-peak | 142 |
| abstract_inverted_index.better | 116, 157 |
| abstract_inverted_index.detect | 94 |
| abstract_inverted_index.domain | 70 |
| abstract_inverted_index.employ | 56 |
| abstract_inverted_index.having | 161 |
| abstract_inverted_index.method | 100, 114, 152 |
| abstract_inverted_index.motion | 22 |
| abstract_inverted_index.muscle | 20 |
| abstract_inverted_index.noise, | 19, 21 |
| abstract_inverted_index.noises | 16 |
| abstract_inverted_index.paper, | 54 |
| abstract_inverted_index.remove | 62 |
| abstract_inverted_index.signal | 77, 117 |
| abstract_inverted_index.square | 125 |
| abstract_inverted_index.wander | 26 |
| abstract_inverted_index.Hilbert | 80 |
| abstract_inverted_index.R-peaks | 95, 160 |
| abstract_inverted_index.cardiac | 8 |
| abstract_inverted_index.enhance | 74 |
| abstract_inverted_index.explore | 89 |
| abstract_inverted_index.initial | 47 |
| abstract_inverted_index.optimal | 91 |
| abstract_inverted_index.present | 113 |
| abstract_inverted_index.primary | 4 |
| abstract_inverted_index.quality | 131 |
| abstract_inverted_index.results | 111 |
| abstract_inverted_index.signal, | 140 |
| abstract_inverted_index.signals | 14, 31, 105 |
| abstract_inverted_index.tested. | 146 |
| abstract_inverted_index.wavelet | 59 |
| abstract_inverted_index.adaptive | 84 |
| abstract_inverted_index.baseline | 25 |
| abstract_inverted_index.discrete | 58 |
| abstract_inverted_index.enhanced | 138 |
| abstract_inverted_index.evaluate | 129 |
| abstract_inverted_index.positive | 167 |
| abstract_inverted_index.proposed | 99, 151 |
| abstract_inverted_index.analysis. | 51 |
| abstract_inverted_index.artifacts | 23 |
| abstract_inverted_index.database. | 108 |
| abstract_inverted_index.detecting | 159 |
| abstract_inverted_index.detection | 38, 143, 174 |
| abstract_inverted_index.different | 15 |
| abstract_inverted_index.evaluated | 102 |
| abstract_inverted_index.frequency | 69 |
| abstract_inverted_index.preserved | 135 |
| abstract_inverted_index.real-time | 33 |
| abstract_inverted_index.technique | 86 |
| abstract_inverted_index.transform | 60, 81 |
| abstract_inverted_index.components | 64 |
| abstract_inverted_index.diagnostic | 5 |
| abstract_inverted_index.disorders. | 9 |
| abstract_inverted_index.frequently | 28 |
| abstract_inverted_index.instrument | 18 |
| abstract_inverted_index.situation. | 34 |
| abstract_inverted_index.accurately. | 97 |
| abstract_inverted_index.acquisition | 11 |
| abstract_inverted_index.combination | 92 |
| abstract_inverted_index.information | 134 |
| abstract_inverted_index.performance | 148 |
| abstract_inverted_index.sensitivity | 162 |
| abstract_inverted_index.experimental | 110 |
| abstract_inverted_index.respectively | 171 |
| abstract_inverted_index.segmentation | 36 |
| abstract_inverted_index.thresholding | 85 |
| abstract_inverted_index.physiological | 133 |
| abstract_inverted_index.predictability | 168 |
| abstract_inverted_index.Electrocardiogram | 0 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5073398007 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I193073490 |
| citation_normalized_percentile.value | 0.98178635 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |