Decentralized Emergent Behavior Design in Robotic Swarms Using Gibbs Random Fields Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-7609609/v1
This paper presents a novel methodology that extends the concepts of Gibbs Random Fields (GRFs) to swarm robotics, facilitating decentralized control of diverse swarm behaviors using only local information. In this approach, a GRF is a probabilistic graph model that describes robot interactions through a Gibbs distribution, guiding each robot to converge to a desired global behavior via locally sampled velocity commands using Markov Chain Monte Carlo (MCMC). This decentralized framework demonstrates scalability, robustness, and flexibility as robots respond autonomously to environmental changes and individual failures. To demonstrate the methodology's versatility, we address three primary challenges in swarm robotics: flocking-segregative, cooperative transport, and pattern formation behaviors. Simulations and real-world experiments show the method's adaptability, with the flocking-segregative strategy achieving cohesive navigation and segregation, cooperative transport handling varied object shapes and sizes, and pattern formation creating structured configurations, including chain-like assemblies suitable for modular robotic applications. Overall, our approach highlights the potential of GRFs in swarm robotics, providing a versatile foundation for developing intricate, scalable, and autonomous swarm behaviors.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-7609609/v1
- https://www.researchsquare.com/article/rs-7609609/latest.pdf
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4415092100
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415092100Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-7609609/v1Digital Object Identifier
- Title
-
Decentralized Emergent Behavior Design in Robotic Swarms Using Gibbs Random FieldsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-12Full publication date if available
- Authors
-
Paulo Rezeck, Luiz ChaimowiczList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-7609609/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-7609609/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-7609609/latest.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415092100 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-7609609/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-7609609/v1 |
| ids.openalex | https://openalex.org/W4415092100 |
| fwci | 0.0 |
| type | preprint |
| title | Decentralized Emergent Behavior Design in Robotic Swarms Using Gibbs Random Fields |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11252 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9796000123023987 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3312 |
| topics[0].subfield.display_name | Sociology and Political Science |
| topics[0].display_name | Evolutionary Game Theory and Cooperation |
| topics[1].id | https://openalex.org/T13187 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9786999821662903 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Diffusion and Search Dynamics |
| topics[2].id | https://openalex.org/T11764 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9595000147819519 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Evolution and Genetic Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-7609609/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-7609609/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-7609609/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016049450 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3448-5486 |
| authorships[0].author.display_name | Paulo Rezeck |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I110200422 |
| authorships[0].affiliations[0].raw_affiliation_string | Universidade Federal de Minas Gerais |
| authorships[0].institutions[0].id | https://openalex.org/I110200422 |
| authorships[0].institutions[0].ror | https://ror.org/0176yjw32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I110200422 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade Federal de Minas Gerais |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Paulo Rezeck |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Universidade Federal de Minas Gerais |
| authorships[1].author.id | https://openalex.org/A5073879771 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8156-9941 |
| authorships[1].author.display_name | Luiz Chaimowicz |
| authorships[1].countries | BR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I110200422 |
| authorships[1].affiliations[0].raw_affiliation_string | Universidade Federal de Minas Gerais |
| authorships[1].institutions[0].id | https://openalex.org/I110200422 |
| authorships[1].institutions[0].ror | https://ror.org/0176yjw32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I110200422 |
| authorships[1].institutions[0].country_code | BR |
| authorships[1].institutions[0].display_name | Universidade Federal de Minas Gerais |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Luiz Chaimowicz |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Universidade Federal de Minas Gerais |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-7609609/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-13T00:00:00 |
| display_name | Decentralized Emergent Behavior Design in Robotic Swarms Using Gibbs Random Fields |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11252 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9796000123023987 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3312 |
| primary_topic.subfield.display_name | Sociology and Political Science |
| primary_topic.display_name | Evolutionary Game Theory and Cooperation |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-7609609/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-7609609/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7609609/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-7609609/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-7609609/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-7609609/v1 |
| publication_date | 2025-10-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 33, 36, 45, 54, 158 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.To | 87 |
| abstract_inverted_index.as | 77 |
| abstract_inverted_index.in | 97, 154 |
| abstract_inverted_index.is | 35 |
| abstract_inverted_index.of | 11, 22, 152 |
| abstract_inverted_index.to | 16, 51, 53, 81 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.GRF | 34 |
| abstract_inverted_index.and | 75, 84, 103, 108, 122, 130, 132, 165 |
| abstract_inverted_index.for | 142, 161 |
| abstract_inverted_index.our | 147 |
| abstract_inverted_index.the | 9, 89, 112, 116, 150 |
| abstract_inverted_index.via | 58 |
| abstract_inverted_index.GRFs | 153 |
| abstract_inverted_index.This | 1, 69 |
| abstract_inverted_index.each | 49 |
| abstract_inverted_index.only | 27 |
| abstract_inverted_index.show | 111 |
| abstract_inverted_index.that | 7, 40 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.with | 115 |
| abstract_inverted_index.Carlo | 67 |
| abstract_inverted_index.Chain | 65 |
| abstract_inverted_index.Gibbs | 12, 46 |
| abstract_inverted_index.Monte | 66 |
| abstract_inverted_index.graph | 38 |
| abstract_inverted_index.local | 28 |
| abstract_inverted_index.model | 39 |
| abstract_inverted_index.novel | 5 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.robot | 42, 50 |
| abstract_inverted_index.swarm | 17, 24, 98, 155, 167 |
| abstract_inverted_index.three | 94 |
| abstract_inverted_index.using | 26, 63 |
| abstract_inverted_index.(GRFs) | 15 |
| abstract_inverted_index.Fields | 14 |
| abstract_inverted_index.Markov | 64 |
| abstract_inverted_index.Random | 13 |
| abstract_inverted_index.global | 56 |
| abstract_inverted_index.object | 128 |
| abstract_inverted_index.robots | 78 |
| abstract_inverted_index.shapes | 129 |
| abstract_inverted_index.sizes, | 131 |
| abstract_inverted_index.varied | 127 |
| abstract_inverted_index.(MCMC). | 68 |
| abstract_inverted_index.address | 93 |
| abstract_inverted_index.changes | 83 |
| abstract_inverted_index.control | 21 |
| abstract_inverted_index.desired | 55 |
| abstract_inverted_index.diverse | 23 |
| abstract_inverted_index.extends | 8 |
| abstract_inverted_index.guiding | 48 |
| abstract_inverted_index.locally | 59 |
| abstract_inverted_index.modular | 143 |
| abstract_inverted_index.pattern | 104, 133 |
| abstract_inverted_index.primary | 95 |
| abstract_inverted_index.respond | 79 |
| abstract_inverted_index.robotic | 144 |
| abstract_inverted_index.sampled | 60 |
| abstract_inverted_index.through | 44 |
| abstract_inverted_index.Overall, | 146 |
| abstract_inverted_index.approach | 148 |
| abstract_inverted_index.behavior | 57 |
| abstract_inverted_index.cohesive | 120 |
| abstract_inverted_index.commands | 62 |
| abstract_inverted_index.concepts | 10 |
| abstract_inverted_index.converge | 52 |
| abstract_inverted_index.creating | 135 |
| abstract_inverted_index.handling | 126 |
| abstract_inverted_index.method's | 113 |
| abstract_inverted_index.presents | 3 |
| abstract_inverted_index.strategy | 118 |
| abstract_inverted_index.suitable | 141 |
| abstract_inverted_index.velocity | 61 |
| abstract_inverted_index.achieving | 119 |
| abstract_inverted_index.approach, | 32 |
| abstract_inverted_index.behaviors | 25 |
| abstract_inverted_index.describes | 41 |
| abstract_inverted_index.failures. | 86 |
| abstract_inverted_index.formation | 105, 134 |
| abstract_inverted_index.framework | 71 |
| abstract_inverted_index.including | 138 |
| abstract_inverted_index.potential | 151 |
| abstract_inverted_index.providing | 157 |
| abstract_inverted_index.robotics, | 18, 156 |
| abstract_inverted_index.robotics: | 99 |
| abstract_inverted_index.scalable, | 164 |
| abstract_inverted_index.transport | 125 |
| abstract_inverted_index.versatile | 159 |
| abstract_inverted_index.assemblies | 140 |
| abstract_inverted_index.autonomous | 166 |
| abstract_inverted_index.behaviors. | 106, 168 |
| abstract_inverted_index.chain-like | 139 |
| abstract_inverted_index.challenges | 96 |
| abstract_inverted_index.developing | 162 |
| abstract_inverted_index.foundation | 160 |
| abstract_inverted_index.highlights | 149 |
| abstract_inverted_index.individual | 85 |
| abstract_inverted_index.intricate, | 163 |
| abstract_inverted_index.navigation | 121 |
| abstract_inverted_index.real-world | 109 |
| abstract_inverted_index.structured | 136 |
| abstract_inverted_index.transport, | 102 |
| abstract_inverted_index.Simulations | 107 |
| abstract_inverted_index.cooperative | 101, 124 |
| abstract_inverted_index.demonstrate | 88 |
| abstract_inverted_index.experiments | 110 |
| abstract_inverted_index.flexibility | 76 |
| abstract_inverted_index.methodology | 6 |
| abstract_inverted_index.robustness, | 74 |
| abstract_inverted_index.autonomously | 80 |
| abstract_inverted_index.demonstrates | 72 |
| abstract_inverted_index.facilitating | 19 |
| abstract_inverted_index.information. | 29 |
| abstract_inverted_index.interactions | 43 |
| abstract_inverted_index.scalability, | 73 |
| abstract_inverted_index.segregation, | 123 |
| abstract_inverted_index.versatility, | 91 |
| abstract_inverted_index.adaptability, | 114 |
| abstract_inverted_index.applications. | 145 |
| abstract_inverted_index.decentralized | 20, 70 |
| abstract_inverted_index.distribution, | 47 |
| abstract_inverted_index.environmental | 82 |
| abstract_inverted_index.methodology's | 90 |
| abstract_inverted_index.probabilistic | 37 |
| abstract_inverted_index.configurations, | 137 |
| abstract_inverted_index.flocking-segregative | 117 |
| abstract_inverted_index.flocking-segregative, | 100 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.58836705 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |