Decentralized Federated Averaging via Random Walk Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2508.21286
Federated Learning (FL) is a communication-efficient distributed machine learning method that allows multiple devices to collaboratively train models without sharing raw data. FL can be categorized into centralized and decentralized paradigms. The centralized paradigm relies on a central server to aggregate local models, potentially resulting in single points of failure, communication bottlenecks, and exposure of model parameters. In contrast, the decentralized paradigm, which does not require a central server, provides improved robustness and privacy. The essence of federated learning lies in leveraging multiple local updates for efficient communication. However, this approach may result in slower convergence or even convergence to suboptimal models in the presence of heterogeneous and imbalanced data. To address this challenge, we study decentralized federated averaging via random walk (DFedRW), which replaces multiple local update steps on a single device with random walk updates. Traditional Federated Averaging (FedAvg) and its decentralized versions commonly ignore stragglers, which reduces the amount of training data and introduces sampling bias. Therefore, we allow DFedRW to aggregate partial random walk updates, ensuring that each computation contributes to the model update. To further improve communication efficiency, we also propose a quantized version of DFedRW. We demonstrate that (quantized) DFedRW achieves convergence upper bound of order $\mathcal{O}(\frac{1}{k^{1-q}})$ under convex conditions. Furthermore, we propose a sufficient condition that reveals when quantization balances communication and convergence. Numerical analysis indicates that our proposed algorithms outperform (decentralized) FedAvg in both convergence rate and accuracy, achieving a 38.3\% and 37.5\% increase in test accuracy under high levels of heterogeneities.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2508.21286
- https://arxiv.org/pdf/2508.21286
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415989258
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415989258Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2508.21286Digital Object Identifier
- Title
-
Decentralized Federated Averaging via Random WalkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-29Full publication date if available
- Authors
-
Changheng Wang, Zhiqing Wei, Lizhe Liu, Qiao Deng, Y. Wu, Yangyang Niu, Yashan Pang, Zhiyong FengList of authors in order
- Landing page
-
https://arxiv.org/abs/2508.21286Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2508.21286Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2508.21286Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415989258 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2508.21286 |
| ids.doi | https://doi.org/10.48550/arxiv.2508.21286 |
| ids.openalex | https://openalex.org/W4415989258 |
| fwci | |
| type | preprint |
| title | Decentralized Federated Averaging via Random Walk |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2508.21286 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2508.21286 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2508.21286 |
| locations[1].id | doi:10.48550/arxiv.2508.21286 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2508.21286 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103109047 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4757-2842 |
| authorships[0].author.display_name | Changheng Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Changheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5039663772 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7940-2739 |
| authorships[1].author.display_name | Zhiqing Wei |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wei, Zhiqing |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5085696768 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5111-0750 |
| authorships[2].author.display_name | Lizhe Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Lizhe |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5115598127 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7335-7199 |
| authorships[3].author.display_name | Qiao Deng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Deng, Qiao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5110187492 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-1046-5627 |
| authorships[4].author.display_name | Y. Wu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wu, Yingda |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5114851792 |
| authorships[5].author.orcid | https://orcid.org/0009-0006-0633-8768 |
| authorships[5].author.display_name | Yangyang Niu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Niu, Yangyang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5001870024 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9657-6658 |
| authorships[6].author.display_name | Yashan Pang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Pang, Yashan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5001714538 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5322-222X |
| authorships[7].author.display_name | Zhiyong Feng |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Feng, Zhiyong |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2508.21286 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Decentralized Federated Averaging via Random Walk |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-08T23:21:52.890332 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2508.21286 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2508.21286 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2508.21286 |
| primary_location.id | pmh:oai:arXiv.org:2508.21286 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2508.21286 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2508.21286 |
| publication_date | 2025-08-29 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 36, 66, 130, 186, 209, 237 |
| abstract_inverted_index.FL | 22 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.To | 110, 178 |
| abstract_inverted_index.We | 191 |
| abstract_inverted_index.be | 24 |
| abstract_inverted_index.in | 45, 80, 93, 102, 230, 242 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 48, 54, 76, 105, 152, 189, 200, 248 |
| abstract_inverted_index.on | 35, 129 |
| abstract_inverted_index.or | 96 |
| abstract_inverted_index.to | 14, 39, 99, 163, 174 |
| abstract_inverted_index.we | 114, 160, 183, 207 |
| abstract_inverted_index.The | 31, 74 |
| abstract_inverted_index.and | 28, 52, 72, 107, 141, 155, 218, 234, 239 |
| abstract_inverted_index.can | 23 |
| abstract_inverted_index.for | 85 |
| abstract_inverted_index.its | 142 |
| abstract_inverted_index.may | 91 |
| abstract_inverted_index.not | 64 |
| abstract_inverted_index.our | 224 |
| abstract_inverted_index.raw | 20 |
| abstract_inverted_index.the | 59, 103, 150, 175 |
| abstract_inverted_index.via | 119 |
| abstract_inverted_index.(FL) | 2 |
| abstract_inverted_index.also | 184 |
| abstract_inverted_index.both | 231 |
| abstract_inverted_index.data | 154 |
| abstract_inverted_index.does | 63 |
| abstract_inverted_index.each | 171 |
| abstract_inverted_index.even | 97 |
| abstract_inverted_index.high | 246 |
| abstract_inverted_index.into | 26 |
| abstract_inverted_index.lies | 79 |
| abstract_inverted_index.rate | 233 |
| abstract_inverted_index.test | 243 |
| abstract_inverted_index.that | 10, 170, 193, 212, 223 |
| abstract_inverted_index.this | 89, 112 |
| abstract_inverted_index.walk | 121, 135, 167 |
| abstract_inverted_index.when | 214 |
| abstract_inverted_index.with | 133 |
| abstract_inverted_index.allow | 161 |
| abstract_inverted_index.bias. | 158 |
| abstract_inverted_index.bound | 199 |
| abstract_inverted_index.data. | 21, 109 |
| abstract_inverted_index.local | 41, 83, 126 |
| abstract_inverted_index.model | 55, 176 |
| abstract_inverted_index.order | 201 |
| abstract_inverted_index.steps | 128 |
| abstract_inverted_index.study | 115 |
| abstract_inverted_index.train | 16 |
| abstract_inverted_index.under | 203, 245 |
| abstract_inverted_index.upper | 198 |
| abstract_inverted_index.which | 62, 123, 148 |
| abstract_inverted_index.37.5\% | 240 |
| abstract_inverted_index.38.3\% | 238 |
| abstract_inverted_index.DFedRW | 162, 195 |
| abstract_inverted_index.FedAvg | 229 |
| abstract_inverted_index.allows | 11 |
| abstract_inverted_index.amount | 151 |
| abstract_inverted_index.convex | 204 |
| abstract_inverted_index.device | 132 |
| abstract_inverted_index.ignore | 146 |
| abstract_inverted_index.levels | 247 |
| abstract_inverted_index.method | 9 |
| abstract_inverted_index.models | 17, 101 |
| abstract_inverted_index.points | 47 |
| abstract_inverted_index.random | 120, 134, 166 |
| abstract_inverted_index.relies | 34 |
| abstract_inverted_index.result | 92 |
| abstract_inverted_index.server | 38 |
| abstract_inverted_index.single | 46, 131 |
| abstract_inverted_index.slower | 94 |
| abstract_inverted_index.update | 127 |
| abstract_inverted_index.DFedRW. | 190 |
| abstract_inverted_index.address | 111 |
| abstract_inverted_index.central | 37, 67 |
| abstract_inverted_index.devices | 13 |
| abstract_inverted_index.essence | 75 |
| abstract_inverted_index.further | 179 |
| abstract_inverted_index.improve | 180 |
| abstract_inverted_index.machine | 7 |
| abstract_inverted_index.models, | 42 |
| abstract_inverted_index.partial | 165 |
| abstract_inverted_index.propose | 185, 208 |
| abstract_inverted_index.reduces | 149 |
| abstract_inverted_index.require | 65 |
| abstract_inverted_index.reveals | 213 |
| abstract_inverted_index.server, | 68 |
| abstract_inverted_index.sharing | 19 |
| abstract_inverted_index.update. | 177 |
| abstract_inverted_index.updates | 84 |
| abstract_inverted_index.version | 188 |
| abstract_inverted_index.without | 18 |
| abstract_inverted_index.(FedAvg) | 140 |
| abstract_inverted_index.However, | 88 |
| abstract_inverted_index.Learning | 1 |
| abstract_inverted_index.accuracy | 244 |
| abstract_inverted_index.achieves | 196 |
| abstract_inverted_index.analysis | 221 |
| abstract_inverted_index.approach | 90 |
| abstract_inverted_index.balances | 216 |
| abstract_inverted_index.commonly | 145 |
| abstract_inverted_index.ensuring | 169 |
| abstract_inverted_index.exposure | 53 |
| abstract_inverted_index.failure, | 49 |
| abstract_inverted_index.improved | 70 |
| abstract_inverted_index.increase | 241 |
| abstract_inverted_index.learning | 8, 78 |
| abstract_inverted_index.multiple | 12, 82, 125 |
| abstract_inverted_index.paradigm | 33 |
| abstract_inverted_index.presence | 104 |
| abstract_inverted_index.privacy. | 73 |
| abstract_inverted_index.proposed | 225 |
| abstract_inverted_index.provides | 69 |
| abstract_inverted_index.replaces | 124 |
| abstract_inverted_index.sampling | 157 |
| abstract_inverted_index.training | 153 |
| abstract_inverted_index.updates, | 168 |
| abstract_inverted_index.updates. | 136 |
| abstract_inverted_index.versions | 144 |
| abstract_inverted_index.(DFedRW), | 122 |
| abstract_inverted_index.Averaging | 139 |
| abstract_inverted_index.Federated | 0, 138 |
| abstract_inverted_index.Numerical | 220 |
| abstract_inverted_index.accuracy, | 235 |
| abstract_inverted_index.achieving | 236 |
| abstract_inverted_index.aggregate | 40, 164 |
| abstract_inverted_index.averaging | 118 |
| abstract_inverted_index.condition | 211 |
| abstract_inverted_index.contrast, | 58 |
| abstract_inverted_index.efficient | 86 |
| abstract_inverted_index.federated | 77, 117 |
| abstract_inverted_index.indicates | 222 |
| abstract_inverted_index.paradigm, | 61 |
| abstract_inverted_index.quantized | 187 |
| abstract_inverted_index.resulting | 44 |
| abstract_inverted_index.Therefore, | 159 |
| abstract_inverted_index.algorithms | 226 |
| abstract_inverted_index.challenge, | 113 |
| abstract_inverted_index.imbalanced | 108 |
| abstract_inverted_index.introduces | 156 |
| abstract_inverted_index.leveraging | 81 |
| abstract_inverted_index.outperform | 227 |
| abstract_inverted_index.paradigms. | 30 |
| abstract_inverted_index.robustness | 71 |
| abstract_inverted_index.suboptimal | 100 |
| abstract_inverted_index.sufficient | 210 |
| abstract_inverted_index.(quantized) | 194 |
| abstract_inverted_index.Traditional | 137 |
| abstract_inverted_index.categorized | 25 |
| abstract_inverted_index.centralized | 27, 32 |
| abstract_inverted_index.computation | 172 |
| abstract_inverted_index.conditions. | 205 |
| abstract_inverted_index.contributes | 173 |
| abstract_inverted_index.convergence | 95, 98, 197, 232 |
| abstract_inverted_index.demonstrate | 192 |
| abstract_inverted_index.distributed | 6 |
| abstract_inverted_index.efficiency, | 182 |
| abstract_inverted_index.parameters. | 56 |
| abstract_inverted_index.potentially | 43 |
| abstract_inverted_index.stragglers, | 147 |
| abstract_inverted_index.Furthermore, | 206 |
| abstract_inverted_index.bottlenecks, | 51 |
| abstract_inverted_index.convergence. | 219 |
| abstract_inverted_index.quantization | 215 |
| abstract_inverted_index.communication | 50, 181, 217 |
| abstract_inverted_index.decentralized | 29, 60, 116, 143 |
| abstract_inverted_index.heterogeneous | 106 |
| abstract_inverted_index.communication. | 87 |
| abstract_inverted_index.(decentralized) | 228 |
| abstract_inverted_index.collaboratively | 15 |
| abstract_inverted_index.heterogeneities. | 249 |
| abstract_inverted_index.communication-efficient | 5 |
| abstract_inverted_index.$\mathcal{O}(\frac{1}{k^{1-q}})$ | 202 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |