Deciphering Trajectory-Aided LLM Reasoning: An Optimization Perspective Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.19815
We propose a novel framework for comprehending the reasoning capabilities of large language models (LLMs) through the perspective of meta-learning. By conceptualizing reasoning trajectories as pseudo-gradient descent updates to the LLM's parameters, we identify parallels between LLM reasoning and various meta-learning paradigms. We formalize the training process for reasoning tasks as a meta-learning setup, with each question treated as an individual task, and reasoning trajectories serving as the inner loop optimization for adapting model parameters. Once trained on a diverse set of questions, the LLM develops fundamental reasoning capabilities that can generalize to previously unseen questions. Extensive empirical evaluations substantiate the strong connection between LLM reasoning and meta-learning, exploring several issues of significant interest from a meta-learning standpoint. Our work not only enhances the understanding of LLM reasoning but also provides practical insights for improving these models through established meta-learning techniques.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.19815
- https://arxiv.org/pdf/2505.19815
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414587198
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414587198Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.19815Digital Object Identifier
- Title
-
Deciphering Trajectory-Aided LLM Reasoning: An Optimization PerspectiveWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-26Full publication date if available
- Authors
-
Junnan Liu, Hongwei Liu, Linchen Xiao, Shudong Liu, Taolin Zhang, Zihan Ma, Songyang Zhang, Kai ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.19815Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.19815Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.19815Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414587198 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.19815 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.19815 |
| ids.openalex | https://openalex.org/W4414587198 |
| fwci | |
| type | preprint |
| title | Deciphering Trajectory-Aided LLM Reasoning: An Optimization Perspective |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9764000177383423 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T13999 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9487000107765198 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Digital Rights Management and Security |
| topics[2].id | https://openalex.org/T10456 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9326000213623047 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Multi-Agent Systems and Negotiation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.19815 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.19815 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.19815 |
| locations[1].id | doi:10.48550/arxiv.2505.19815 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.19815 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5051994745 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-7629-947X |
| authorships[0].author.display_name | Junnan Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Junnan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100411968 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4046-163X |
| authorships[1].author.display_name | Hongwei Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liu, Hongwei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5077857247 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8913-4771 |
| authorships[2].author.display_name | Linchen Xiao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiao, Linchen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059738483 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6810-6894 |
| authorships[3].author.display_name | Shudong Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Shudong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5041581408 |
| authorships[4].author.orcid | https://orcid.org/0009-0006-2441-2861 |
| authorships[4].author.display_name | Taolin Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Taolin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5113423049 |
| authorships[5].author.orcid | https://orcid.org/0009-0002-2696-4943 |
| authorships[5].author.display_name | Zihan Ma |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ma, Zihan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100747795 |
| authorships[6].author.orcid | https://orcid.org/0009-0003-1409-3367 |
| authorships[6].author.display_name | Songyang Zhang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhang, Songyang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100437976 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5624-2987 |
| authorships[7].author.display_name | Kai Chen |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Chen, Kai |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.19815 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deciphering Trajectory-Aided LLM Reasoning: An Optimization Perspective |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9764000177383423 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.19815 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.19815 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.19815 |
| primary_location.id | pmh:oai:arXiv.org:2505.19815 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.19815 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.19815 |
| publication_date | 2025-05-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2, 51, 78, 115 |
| abstract_inverted_index.By | 20 |
| abstract_inverted_index.We | 0, 42 |
| abstract_inverted_index.an | 59 |
| abstract_inverted_index.as | 24, 50, 58, 66 |
| abstract_inverted_index.of | 10, 18, 81, 111, 125 |
| abstract_inverted_index.on | 77 |
| abstract_inverted_index.to | 28, 92 |
| abstract_inverted_index.we | 32 |
| abstract_inverted_index.LLM | 36, 84, 104, 126 |
| abstract_inverted_index.Our | 118 |
| abstract_inverted_index.and | 38, 62, 106 |
| abstract_inverted_index.but | 128 |
| abstract_inverted_index.can | 90 |
| abstract_inverted_index.for | 5, 47, 71, 133 |
| abstract_inverted_index.not | 120 |
| abstract_inverted_index.set | 80 |
| abstract_inverted_index.the | 7, 16, 29, 44, 67, 83, 100, 123 |
| abstract_inverted_index.Once | 75 |
| abstract_inverted_index.also | 129 |
| abstract_inverted_index.each | 55 |
| abstract_inverted_index.from | 114 |
| abstract_inverted_index.loop | 69 |
| abstract_inverted_index.only | 121 |
| abstract_inverted_index.that | 89 |
| abstract_inverted_index.with | 54 |
| abstract_inverted_index.work | 119 |
| abstract_inverted_index.LLM's | 30 |
| abstract_inverted_index.inner | 68 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.model | 73 |
| abstract_inverted_index.novel | 3 |
| abstract_inverted_index.task, | 61 |
| abstract_inverted_index.tasks | 49 |
| abstract_inverted_index.these | 135 |
| abstract_inverted_index.(LLMs) | 14 |
| abstract_inverted_index.issues | 110 |
| abstract_inverted_index.models | 13, 136 |
| abstract_inverted_index.setup, | 53 |
| abstract_inverted_index.strong | 101 |
| abstract_inverted_index.unseen | 94 |
| abstract_inverted_index.between | 35, 103 |
| abstract_inverted_index.descent | 26 |
| abstract_inverted_index.diverse | 79 |
| abstract_inverted_index.process | 46 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.serving | 65 |
| abstract_inverted_index.several | 109 |
| abstract_inverted_index.through | 15, 137 |
| abstract_inverted_index.trained | 76 |
| abstract_inverted_index.treated | 57 |
| abstract_inverted_index.updates | 27 |
| abstract_inverted_index.various | 39 |
| abstract_inverted_index.adapting | 72 |
| abstract_inverted_index.develops | 85 |
| abstract_inverted_index.enhances | 122 |
| abstract_inverted_index.identify | 33 |
| abstract_inverted_index.insights | 132 |
| abstract_inverted_index.interest | 113 |
| abstract_inverted_index.language | 12 |
| abstract_inverted_index.provides | 130 |
| abstract_inverted_index.question | 56 |
| abstract_inverted_index.training | 45 |
| abstract_inverted_index.Extensive | 96 |
| abstract_inverted_index.empirical | 97 |
| abstract_inverted_index.exploring | 108 |
| abstract_inverted_index.formalize | 43 |
| abstract_inverted_index.framework | 4 |
| abstract_inverted_index.improving | 134 |
| abstract_inverted_index.parallels | 34 |
| abstract_inverted_index.practical | 131 |
| abstract_inverted_index.reasoning | 8, 22, 37, 48, 63, 87, 105, 127 |
| abstract_inverted_index.connection | 102 |
| abstract_inverted_index.generalize | 91 |
| abstract_inverted_index.individual | 60 |
| abstract_inverted_index.paradigms. | 41 |
| abstract_inverted_index.previously | 93 |
| abstract_inverted_index.questions, | 82 |
| abstract_inverted_index.questions. | 95 |
| abstract_inverted_index.established | 138 |
| abstract_inverted_index.evaluations | 98 |
| abstract_inverted_index.fundamental | 86 |
| abstract_inverted_index.parameters, | 31 |
| abstract_inverted_index.parameters. | 74 |
| abstract_inverted_index.perspective | 17 |
| abstract_inverted_index.significant | 112 |
| abstract_inverted_index.standpoint. | 117 |
| abstract_inverted_index.techniques. | 140 |
| abstract_inverted_index.capabilities | 9, 88 |
| abstract_inverted_index.optimization | 70 |
| abstract_inverted_index.substantiate | 99 |
| abstract_inverted_index.trajectories | 23, 64 |
| abstract_inverted_index.comprehending | 6 |
| abstract_inverted_index.meta-learning | 40, 52, 116, 139 |
| abstract_inverted_index.understanding | 124 |
| abstract_inverted_index.meta-learning, | 107 |
| abstract_inverted_index.meta-learning. | 19 |
| abstract_inverted_index.conceptualizing | 21 |
| abstract_inverted_index.pseudo-gradient | 25 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |