Decision Tree Learning Algorithms for WDM Systems' Performance Prediction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4391700/v1
We consider the problem of predicting the performance of an operational wavelength division multiplexing (WDM) system using machine learning techniques. We assess the performance of the WDM system using the quality value metric (Q-val). To that end, we construct an actual WDM dataset, whose records are generated using four live WDM systems. We export these records using different optical measurement tools, such as reflectometers, spectrum analyzers, and the operating management system for each WDM system. To circumvent the difficulty of theoretical analysis of WDM system performance, we propose using machine learning techniques for predicting such performance. We employ the decision tree learning techniques to predict the Q-val, namely, the decision tree regressor (DTR) and the decision tree classifier (DTC). By training DTR on the constructed dataset and using shuffle-split cross-validation, we show that DTR outperforms DTC in terms of the R2 score, specifically, our DTR achieves an R2 score of 96.2%, while the testing score records 89.65%. The proposed DTR machine learning model outperforms the known benchmark of support vector machine (SVM), which merely achieves a training R2 score of 92.2%. In addition, our numerical results show ≈ 3000 reduction in total running time when using DTR compared to SVM.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-4391700/v1
- https://www.researchsquare.com/article/rs-4391700/latest.pdf
- OA Status
- green
- References
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398143698
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398143698Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4391700/v1Digital Object Identifier
- Title
-
Decision Tree Learning Algorithms for WDM Systems' Performance PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-20Full publication date if available
- Authors
-
Emadeldeen Morsy, Nour Eldin Ismail, Moustafa H. Aly, Karim BanawanList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4391700/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-4391700/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-4391700/latest.pdfDirect OA link when available
- Concepts
-
Decision tree, Computer science, Wavelength-division multiplexing, Decision tree learning, Tree (set theory), Machine learning, Algorithm, Artificial intelligence, Mathematics, Optics, Combinatorics, Wavelength, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
2Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398143698 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4391700/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4391700/v1 |
| ids.openalex | https://openalex.org/W4398143698 |
| fwci | 0.0 |
| type | preprint |
| title | Decision Tree Learning Algorithms for WDM Systems' Performance Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10847 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Optical Network Technologies |
| topics[1].id | https://openalex.org/T10232 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9750999808311462 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Optical Network Technologies |
| topics[2].id | https://openalex.org/T10767 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9327999949455261 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Photonic Communication Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C84525736 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6568730473518372 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[0].display_name | Decision tree |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6453659534454346 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C160724564 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5660562515258789 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1620670 |
| concepts[2].display_name | Wavelength-division multiplexing |
| concepts[3].id | https://openalex.org/C5481197 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5155625343322754 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16766476 |
| concepts[3].display_name | Decision tree learning |
| concepts[4].id | https://openalex.org/C113174947 |
| concepts[4].level | 2 |
| concepts[4].score | 0.46816134452819824 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[4].display_name | Tree (set theory) |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.43286556005477905 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38869303464889526 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37380754947662354 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.14290884137153625 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C120665830 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07257691025733948 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[9].display_name | Optics |
| concepts[10].id | https://openalex.org/C114614502 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06029471755027771 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[10].display_name | Combinatorics |
| concepts[11].id | https://openalex.org/C6260449 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q41364 |
| concepts[11].display_name | Wavelength |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/decision-tree |
| keywords[0].score | 0.6568730473518372 |
| keywords[0].display_name | Decision tree |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6453659534454346 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/wavelength-division-multiplexing |
| keywords[2].score | 0.5660562515258789 |
| keywords[2].display_name | Wavelength-division multiplexing |
| keywords[3].id | https://openalex.org/keywords/decision-tree-learning |
| keywords[3].score | 0.5155625343322754 |
| keywords[3].display_name | Decision tree learning |
| keywords[4].id | https://openalex.org/keywords/tree |
| keywords[4].score | 0.46816134452819824 |
| keywords[4].display_name | Tree (set theory) |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.43286556005477905 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.38869303464889526 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.37380754947662354 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.14290884137153625 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/optics |
| keywords[9].score | 0.07257691025733948 |
| keywords[9].display_name | Optics |
| keywords[10].id | https://openalex.org/keywords/combinatorics |
| keywords[10].score | 0.06029471755027771 |
| keywords[10].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4391700/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-4391700/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-4391700/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5073702535 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3438-2054 |
| authorships[0].author.display_name | Emadeldeen Morsy |
| authorships[0].countries | EG |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I84524832 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt. |
| authorships[0].affiliations[1].raw_affiliation_string | Optical Transmission Design & Configuration Engineer, NOKIA, Bydgoszcz, Poland. |
| authorships[0].institutions[0].id | https://openalex.org/I84524832 |
| authorships[0].institutions[0].ror | https://ror.org/00mzz1w90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I84524832 |
| authorships[0].institutions[0].country_code | EG |
| authorships[0].institutions[0].display_name | Alexandria University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Emadeldeen Morsy |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt., Optical Transmission Design & Configuration Engineer, NOKIA, Bydgoszcz, Poland. |
| authorships[1].author.id | https://openalex.org/A5111787184 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Nour Eldin Ismail |
| authorships[1].countries | EG |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I84524832 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt. |
| authorships[1].institutions[0].id | https://openalex.org/I84524832 |
| authorships[1].institutions[0].ror | https://ror.org/00mzz1w90 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I84524832 |
| authorships[1].institutions[0].country_code | EG |
| authorships[1].institutions[0].display_name | Alexandria University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nour Ismail |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt. |
| authorships[2].author.id | https://openalex.org/A5081530810 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1966-3755 |
| authorships[2].author.display_name | Moustafa H. Aly |
| authorships[2].countries | EG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I59272784 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electronics & Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt. |
| authorships[2].institutions[0].id | https://openalex.org/I59272784 |
| authorships[2].institutions[0].ror | https://ror.org/0004vyj87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I59272784 |
| authorships[2].institutions[0].country_code | EG |
| authorships[2].institutions[0].display_name | Arab Academy for Science, Technology, and Maritime Transport |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Moustafa H. Aly |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electronics & Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt. |
| authorships[3].author.id | https://openalex.org/A5062418593 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8547-5010 |
| authorships[3].author.display_name | Karim Banawan |
| authorships[3].countries | EG |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I84524832 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt. |
| authorships[3].institutions[0].id | https://openalex.org/I84524832 |
| authorships[3].institutions[0].ror | https://ror.org/00mzz1w90 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I84524832 |
| authorships[3].institutions[0].country_code | EG |
| authorships[3].institutions[0].display_name | Alexandria University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Karim Banawan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Electrical Engineering, Faculty of Engineering, Alexandria University, Alexandria, Egypt. |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-4391700/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Decision Tree Learning Algorithms for WDM Systems' Performance Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10847 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Optical Network Technologies |
| related_works | https://openalex.org/W3134840015, https://openalex.org/W2591672004, https://openalex.org/W1982169401, https://openalex.org/W2356463514, https://openalex.org/W4366979180, https://openalex.org/W4319437832, https://openalex.org/W2592385415, https://openalex.org/W2030894524, https://openalex.org/W4243803609, https://openalex.org/W4384470695 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4391700/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-4391700/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4391700/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4391700/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-4391700/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-4391700/v1 |
| publication_date | 2024-05-20 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2792605568, https://openalex.org/W2730069104 |
| referenced_works_count | 2 |
| abstract_inverted_index.a | 176 |
| abstract_inverted_index.By | 120 |
| abstract_inverted_index.In | 182 |
| abstract_inverted_index.To | 35, 76 |
| abstract_inverted_index.We | 1, 21, 53, 97 |
| abstract_inverted_index.an | 10, 40, 147 |
| abstract_inverted_index.as | 63 |
| abstract_inverted_index.in | 137, 191 |
| abstract_inverted_index.of | 5, 9, 25, 80, 83, 139, 150, 168, 180 |
| abstract_inverted_index.on | 123 |
| abstract_inverted_index.to | 104, 199 |
| abstract_inverted_index.we | 38, 87, 131 |
| abstract_inverted_index.DTC | 136 |
| abstract_inverted_index.DTR | 122, 134, 145, 160, 197 |
| abstract_inverted_index.The | 158 |
| abstract_inverted_index.WDM | 27, 42, 51, 74, 84 |
| abstract_inverted_index.and | 67, 114, 127 |
| abstract_inverted_index.are | 46 |
| abstract_inverted_index.for | 72, 93 |
| abstract_inverted_index.our | 144, 184 |
| abstract_inverted_index.the | 3, 7, 23, 26, 30, 68, 78, 99, 106, 109, 115, 124, 140, 153, 165 |
| abstract_inverted_index.≈ | 188 |
| abstract_inverted_index.3000 | 189 |
| abstract_inverted_index.SVM. | 200 |
| abstract_inverted_index.each | 73 |
| abstract_inverted_index.end, | 37 |
| abstract_inverted_index.four | 49 |
| abstract_inverted_index.live | 50 |
| abstract_inverted_index.show | 132, 187 |
| abstract_inverted_index.such | 62, 95 |
| abstract_inverted_index.that | 36, 133 |
| abstract_inverted_index.time | 194 |
| abstract_inverted_index.tree | 101, 111, 117 |
| abstract_inverted_index.when | 195 |
| abstract_inverted_index.(DTR) | 113 |
| abstract_inverted_index.(WDM) | 15 |
| abstract_inverted_index.known | 166 |
| abstract_inverted_index.model | 163 |
| abstract_inverted_index.score | 149, 155, 179 |
| abstract_inverted_index.terms | 138 |
| abstract_inverted_index.these | 55 |
| abstract_inverted_index.total | 192 |
| abstract_inverted_index.using | 17, 29, 48, 57, 89, 128, 196 |
| abstract_inverted_index.value | 32 |
| abstract_inverted_index.which | 173 |
| abstract_inverted_index.while | 152 |
| abstract_inverted_index.whose | 44 |
| abstract_inverted_index.(DTC). | 119 |
| abstract_inverted_index.(SVM), | 172 |
| abstract_inverted_index.92.2%. | 181 |
| abstract_inverted_index.96.2%, | 151 |
| abstract_inverted_index.Q-val, | 107 |
| abstract_inverted_index.actual | 41 |
| abstract_inverted_index.assess | 22 |
| abstract_inverted_index.employ | 98 |
| abstract_inverted_index.export | 54 |
| abstract_inverted_index.merely | 174 |
| abstract_inverted_index.metric | 33 |
| abstract_inverted_index.score, | 142 |
| abstract_inverted_index.system | 16, 28, 71, 85 |
| abstract_inverted_index.tools, | 61 |
| abstract_inverted_index.vector | 170 |
| abstract_inverted_index.89.65%. | 157 |
| abstract_inverted_index.dataset | 126 |
| abstract_inverted_index.machine | 18, 90, 161, 171 |
| abstract_inverted_index.namely, | 108 |
| abstract_inverted_index.optical | 59 |
| abstract_inverted_index.predict | 105 |
| abstract_inverted_index.problem | 4 |
| abstract_inverted_index.propose | 88 |
| abstract_inverted_index.quality | 31 |
| abstract_inverted_index.records | 45, 56, 156 |
| abstract_inverted_index.results | 186 |
| abstract_inverted_index.running | 193 |
| abstract_inverted_index.support | 169 |
| abstract_inverted_index.system. | 75 |
| abstract_inverted_index.testing | 154 |
| abstract_inverted_index.(Q-val). | 34 |
| abstract_inverted_index.achieves | 146, 175 |
| abstract_inverted_index.analysis | 82 |
| abstract_inverted_index.compared | 198 |
| abstract_inverted_index.consider | 2 |
| abstract_inverted_index.dataset, | 43 |
| abstract_inverted_index.decision | 100, 110, 116 |
| abstract_inverted_index.division | 13 |
| abstract_inverted_index.learning | 19, 91, 102, 162 |
| abstract_inverted_index.proposed | 159 |
| abstract_inverted_index.spectrum | 65 |
| abstract_inverted_index.systems. | 52 |
| abstract_inverted_index.training | 121, 177 |
| abstract_inverted_index.addition, | 183 |
| abstract_inverted_index.benchmark | 167 |
| abstract_inverted_index.construct | 39 |
| abstract_inverted_index.different | 58 |
| abstract_inverted_index.generated | 47 |
| abstract_inverted_index.numerical | 185 |
| abstract_inverted_index.operating | 69 |
| abstract_inverted_index.reduction | 190 |
| abstract_inverted_index.regressor | 112 |
| abstract_inverted_index.analyzers, | 66 |
| abstract_inverted_index.circumvent | 77 |
| abstract_inverted_index.classifier | 118 |
| abstract_inverted_index.difficulty | 79 |
| abstract_inverted_index.management | 70 |
| abstract_inverted_index.predicting | 6, 94 |
| abstract_inverted_index.techniques | 92, 103 |
| abstract_inverted_index.wavelength | 12 |
| abstract_inverted_index.constructed | 125 |
| abstract_inverted_index.measurement | 60 |
| abstract_inverted_index.operational | 11 |
| abstract_inverted_index.outperforms | 135, 164 |
| abstract_inverted_index.performance | 8, 24 |
| abstract_inverted_index.techniques. | 20 |
| abstract_inverted_index.theoretical | 81 |
| abstract_inverted_index.multiplexing | 14 |
| abstract_inverted_index.performance, | 86 |
| abstract_inverted_index.performance. | 96 |
| abstract_inverted_index.shuffle-split | 129 |
| abstract_inverted_index.specifically, | 143 |
| abstract_inverted_index.reflectometers, | 64 |
| abstract_inverted_index.cross-validation, | 130 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| abstract_inverted_index.<italic>R</italic><sub>2</sub> | 141, 148, 178 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.06518201 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |