Decision tree‐based method for optimum decomposition level determination in wavelet transform for noise reduction of partial discharge signals Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1049/iet-smt.2019.0081
Partial discharge (PD) monitoring in high‐voltage equipment is one of the effective methods for assessment of its insulation strength. To do this, noise reduction is one of the essential processes on measured PD signals. One of the most popular tools employed for PD de‐noising is wavelet transform. To exploit this transformation, three main parameters, including ‘mother wavelet’, ‘number of decomposition level’, and ‘thresholding procedure’, should be assigned. In this study, a novel and also more accurate method for the determination of required decomposition level is suggested. The proposed method employs a decision tree which takes the pattern of energy spectral density of PD signals in the frequency domain and delivers the optimum decomposition level for de‐noising by wavelet transform. The results, as compared with others, show the superiority of the proposed method in noise reduction of PD signals, both for simulations and field measured signals.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/iet-smt.2019.0081
- https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-smt.2019.0081
- OA Status
- bronze
- Cited By
- 23
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2980095568
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2980095568Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/iet-smt.2019.0081Digital Object Identifier
- Title
-
Decision tree‐based method for optimum decomposition level determination in wavelet transform for noise reduction of partial discharge signalsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-07Full publication date if available
- Authors
-
Amir Abbas Soltani, S. Mohammad ShahrtashList of authors in order
- Landing page
-
https://doi.org/10.1049/iet-smt.2019.0081Publisher landing page
- PDF URL
-
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-smt.2019.0081Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-smt.2019.0081Direct OA link when available
- Concepts
-
Partial discharge, Noise reduction, Wavelet transform, Reduction (mathematics), Noise (video), Wavelet, Pattern recognition (psychology), Wavelet packet decomposition, Decomposition, Discrete wavelet transform, Computer science, Speech recognition, Algorithm, Mathematics, Artificial intelligence, Engineering, Chemistry, Electrical engineering, Voltage, Image (mathematics), Geometry, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
23Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 7, 2023: 2, 2022: 8, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2980095568 |
|---|---|
| doi | https://doi.org/10.1049/iet-smt.2019.0081 |
| ids.doi | https://doi.org/10.1049/iet-smt.2019.0081 |
| ids.mag | 2980095568 |
| ids.openalex | https://openalex.org/W2980095568 |
| fwci | 1.28262909 |
| type | article |
| title | Decision tree‐based method for optimum decomposition level determination in wavelet transform for noise reduction of partial discharge signals |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 16 |
| biblio.first_page | 9 |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| topics[1].id | https://openalex.org/T11343 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Power Transformer Diagnostics and Insulation |
| topics[2].id | https://openalex.org/T10511 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | High voltage insulation and dielectric phenomena |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2200 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C130143024 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8566650152206421 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1929972 |
| concepts[0].display_name | Partial discharge |
| concepts[1].id | https://openalex.org/C163294075 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6154400110244751 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[1].display_name | Noise reduction |
| concepts[2].id | https://openalex.org/C196216189 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5777043104171753 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[2].display_name | Wavelet transform |
| concepts[3].id | https://openalex.org/C111335779 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5135800838470459 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3454686 |
| concepts[3].display_name | Reduction (mathematics) |
| concepts[4].id | https://openalex.org/C99498987 |
| concepts[4].level | 3 |
| concepts[4].score | 0.504430890083313 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[4].display_name | Noise (video) |
| concepts[5].id | https://openalex.org/C47432892 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49743106961250305 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[5].display_name | Wavelet |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.455244243144989 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C155777637 |
| concepts[7].level | 4 |
| concepts[7].score | 0.45012426376342773 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2736187 |
| concepts[7].display_name | Wavelet packet decomposition |
| concepts[8].id | https://openalex.org/C124681953 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4466879963874817 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q339062 |
| concepts[8].display_name | Decomposition |
| concepts[9].id | https://openalex.org/C46286280 |
| concepts[9].level | 4 |
| concepts[9].score | 0.42877382040023804 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[9].display_name | Discrete wavelet transform |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.42660149931907654 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C28490314 |
| concepts[11].level | 1 |
| concepts[11].score | 0.39204609394073486 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[11].display_name | Speech recognition |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.38088151812553406 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.37886589765548706 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.34696364402770996 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.17959550023078918 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.10500869154930115 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| concepts[17].id | https://openalex.org/C119599485 |
| concepts[17].level | 1 |
| concepts[17].score | 0.09150618314743042 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[17].display_name | Electrical engineering |
| concepts[18].id | https://openalex.org/C165801399 |
| concepts[18].level | 2 |
| concepts[18].score | 0.060267508029937744 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[18].display_name | Voltage |
| concepts[19].id | https://openalex.org/C115961682 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[19].display_name | Image (mathematics) |
| concepts[20].id | https://openalex.org/C2524010 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[20].display_name | Geometry |
| concepts[21].id | https://openalex.org/C178790620 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[21].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/partial-discharge |
| keywords[0].score | 0.8566650152206421 |
| keywords[0].display_name | Partial discharge |
| keywords[1].id | https://openalex.org/keywords/noise-reduction |
| keywords[1].score | 0.6154400110244751 |
| keywords[1].display_name | Noise reduction |
| keywords[2].id | https://openalex.org/keywords/wavelet-transform |
| keywords[2].score | 0.5777043104171753 |
| keywords[2].display_name | Wavelet transform |
| keywords[3].id | https://openalex.org/keywords/reduction |
| keywords[3].score | 0.5135800838470459 |
| keywords[3].display_name | Reduction (mathematics) |
| keywords[4].id | https://openalex.org/keywords/noise |
| keywords[4].score | 0.504430890083313 |
| keywords[4].display_name | Noise (video) |
| keywords[5].id | https://openalex.org/keywords/wavelet |
| keywords[5].score | 0.49743106961250305 |
| keywords[5].display_name | Wavelet |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.455244243144989 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/wavelet-packet-decomposition |
| keywords[7].score | 0.45012426376342773 |
| keywords[7].display_name | Wavelet packet decomposition |
| keywords[8].id | https://openalex.org/keywords/decomposition |
| keywords[8].score | 0.4466879963874817 |
| keywords[8].display_name | Decomposition |
| keywords[9].id | https://openalex.org/keywords/discrete-wavelet-transform |
| keywords[9].score | 0.42877382040023804 |
| keywords[9].display_name | Discrete wavelet transform |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.42660149931907654 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/speech-recognition |
| keywords[11].score | 0.39204609394073486 |
| keywords[11].display_name | Speech recognition |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.38088151812553406 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.37886589765548706 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.34696364402770996 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.17959550023078918 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/chemistry |
| keywords[16].score | 0.10500869154930115 |
| keywords[16].display_name | Chemistry |
| keywords[17].id | https://openalex.org/keywords/electrical-engineering |
| keywords[17].score | 0.09150618314743042 |
| keywords[17].display_name | Electrical engineering |
| keywords[18].id | https://openalex.org/keywords/voltage |
| keywords[18].score | 0.060267508029937744 |
| keywords[18].display_name | Voltage |
| language | en |
| locations[0].id | doi:10.1049/iet-smt.2019.0081 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S79875459 |
| locations[0].source.issn | 1751-8822, 1751-8830 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1751-8822 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IET Science Measurement & Technology |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-smt.2019.0081 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IET Science, Measurement & Technology |
| locations[0].landing_page_url | https://doi.org/10.1049/iet-smt.2019.0081 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5060310017 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9970-5080 |
| authorships[0].author.display_name | Amir Abbas Soltani |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210089766 |
| authorships[0].affiliations[0].raw_affiliation_string | Electrical Engineering Departments, Lorestan Branch, Technical and Vocational University (TVU), Do Rud, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I4210089766 |
| authorships[0].institutions[0].ror | https://ror.org/00854zy02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210089766 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | National University of Skills |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Amir Abbas Soltani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electrical Engineering Departments, Lorestan Branch, Technical and Vocational University (TVU), Do Rud, Iran |
| authorships[1].author.id | https://openalex.org/A5041918531 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4459-5416 |
| authorships[1].author.display_name | S. Mohammad Shahrtash |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I67009956 |
| authorships[1].affiliations[0].raw_affiliation_string | Electrical Engineering Departments, Center of Excellence for Power System Automation and Operation, Iran University of Science and Technology (IUST), Tehran, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I67009956 |
| authorships[1].institutions[0].ror | https://ror.org/01jw2p796 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I67009956 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Iran University of Science and Technology |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Seyyed Mohammad Shahrtash |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Electrical Engineering Departments, Center of Excellence for Power System Automation and Operation, Iran University of Science and Technology (IUST), Tehran, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-smt.2019.0081 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Decision tree‐based method for optimum decomposition level determination in wavelet transform for noise reduction of partial discharge signals |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| related_works | https://openalex.org/W2380372197, https://openalex.org/W68308810, https://openalex.org/W2053682625, https://openalex.org/W1986475093, https://openalex.org/W2076239227, https://openalex.org/W2754441293, https://openalex.org/W1506615375, https://openalex.org/W2085792030, https://openalex.org/W1588899229, https://openalex.org/W1967182499 |
| cited_by_count | 23 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/iet-smt.2019.0081 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S79875459 |
| best_oa_location.source.issn | 1751-8822, 1751-8830 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1751-8822 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IET Science Measurement & Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-smt.2019.0081 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IET Science, Measurement & Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1049/iet-smt.2019.0081 |
| primary_location.id | doi:10.1049/iet-smt.2019.0081 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S79875459 |
| primary_location.source.issn | 1751-8822, 1751-8830 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1751-8822 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IET Science Measurement & Technology |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-smt.2019.0081 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IET Science, Measurement & Technology |
| primary_location.landing_page_url | https://doi.org/10.1049/iet-smt.2019.0081 |
| publication_date | 2019-10-07 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2526959660, https://openalex.org/W2568102864, https://openalex.org/W2607672988, https://openalex.org/W2593801993, https://openalex.org/W2588332248, https://openalex.org/W2768324790, https://openalex.org/W2071860331, https://openalex.org/W1965392664, https://openalex.org/W1992526455, https://openalex.org/W1937931689, https://openalex.org/W2146227109, https://openalex.org/W1988917938, https://openalex.org/W1088187922, https://openalex.org/W2194077082, https://openalex.org/W2796288942, https://openalex.org/W2028080091, https://openalex.org/W2101117369, https://openalex.org/W1980959252, https://openalex.org/W2125056386, https://openalex.org/W2018197332, https://openalex.org/W2130839897 |
| referenced_works_count | 21 |
| abstract_inverted_index.a | 70, 90 |
| abstract_inverted_index.In | 67 |
| abstract_inverted_index.PD | 32, 42, 102, 136 |
| abstract_inverted_index.To | 19, 47 |
| abstract_inverted_index.as | 121 |
| abstract_inverted_index.be | 65 |
| abstract_inverted_index.by | 116 |
| abstract_inverted_index.do | 20 |
| abstract_inverted_index.in | 4, 104, 132 |
| abstract_inverted_index.is | 7, 24, 44, 84 |
| abstract_inverted_index.of | 9, 15, 26, 35, 58, 80, 97, 101, 128, 135 |
| abstract_inverted_index.on | 30 |
| abstract_inverted_index.One | 34 |
| abstract_inverted_index.The | 86, 119 |
| abstract_inverted_index.and | 61, 72, 108, 141 |
| abstract_inverted_index.for | 13, 41, 77, 114, 139 |
| abstract_inverted_index.its | 16 |
| abstract_inverted_index.one | 8, 25 |
| abstract_inverted_index.the | 10, 27, 36, 78, 95, 105, 110, 126, 129 |
| abstract_inverted_index.(PD) | 2 |
| abstract_inverted_index.also | 73 |
| abstract_inverted_index.both | 138 |
| abstract_inverted_index.main | 52 |
| abstract_inverted_index.more | 74 |
| abstract_inverted_index.most | 37 |
| abstract_inverted_index.show | 125 |
| abstract_inverted_index.this | 49, 68 |
| abstract_inverted_index.tree | 92 |
| abstract_inverted_index.with | 123 |
| abstract_inverted_index.field | 142 |
| abstract_inverted_index.level | 83, 113 |
| abstract_inverted_index.noise | 22, 133 |
| abstract_inverted_index.novel | 71 |
| abstract_inverted_index.takes | 94 |
| abstract_inverted_index.this, | 21 |
| abstract_inverted_index.three | 51 |
| abstract_inverted_index.tools | 39 |
| abstract_inverted_index.which | 93 |
| abstract_inverted_index.domain | 107 |
| abstract_inverted_index.energy | 98 |
| abstract_inverted_index.method | 76, 88, 131 |
| abstract_inverted_index.should | 64 |
| abstract_inverted_index.study, | 69 |
| abstract_inverted_index.Partial | 0 |
| abstract_inverted_index.density | 100 |
| abstract_inverted_index.employs | 89 |
| abstract_inverted_index.exploit | 48 |
| abstract_inverted_index.methods | 12 |
| abstract_inverted_index.optimum | 111 |
| abstract_inverted_index.others, | 124 |
| abstract_inverted_index.pattern | 96 |
| abstract_inverted_index.popular | 38 |
| abstract_inverted_index.signals | 103 |
| abstract_inverted_index.wavelet | 45, 117 |
| abstract_inverted_index.accurate | 75 |
| abstract_inverted_index.compared | 122 |
| abstract_inverted_index.decision | 91 |
| abstract_inverted_index.delivers | 109 |
| abstract_inverted_index.employed | 40 |
| abstract_inverted_index.measured | 31, 143 |
| abstract_inverted_index.proposed | 87, 130 |
| abstract_inverted_index.required | 81 |
| abstract_inverted_index.results, | 120 |
| abstract_inverted_index.signals, | 137 |
| abstract_inverted_index.signals. | 33, 144 |
| abstract_inverted_index.spectral | 99 |
| abstract_inverted_index.assigned. | 66 |
| abstract_inverted_index.discharge | 1 |
| abstract_inverted_index.effective | 11 |
| abstract_inverted_index.equipment | 6 |
| abstract_inverted_index.essential | 28 |
| abstract_inverted_index.frequency | 106 |
| abstract_inverted_index.including | 54 |
| abstract_inverted_index.level’, | 60 |
| abstract_inverted_index.processes | 29 |
| abstract_inverted_index.reduction | 23, 134 |
| abstract_inverted_index.strength. | 18 |
| abstract_inverted_index.‘mother | 55 |
| abstract_inverted_index.‘number | 57 |
| abstract_inverted_index.assessment | 14 |
| abstract_inverted_index.insulation | 17 |
| abstract_inverted_index.monitoring | 3 |
| abstract_inverted_index.suggested. | 85 |
| abstract_inverted_index.transform. | 46, 118 |
| abstract_inverted_index.parameters, | 53 |
| abstract_inverted_index.simulations | 140 |
| abstract_inverted_index.superiority | 127 |
| abstract_inverted_index.wavelet’, | 56 |
| abstract_inverted_index.de‐noising | 43, 115 |
| abstract_inverted_index.decomposition | 59, 82, 112 |
| abstract_inverted_index.determination | 79 |
| abstract_inverted_index.procedure’, | 63 |
| abstract_inverted_index.high‐voltage | 5 |
| abstract_inverted_index.transformation, | 50 |
| abstract_inverted_index.‘thresholding | 62 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5041918531 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I67009956 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.83972099 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |