DeCo: Decoupling Token Compression from Semantic Abstraction in Multimodal Large Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.20985
The visual projector, which bridges the vision and language modalities and facilitates cross-modal alignment, serves as a crucial component in MLLMs. However, measuring the effectiveness of projectors in vision-language alignment remains under-explored, which currently can only be inferred from the performance of MLLMs on downstream tasks. Motivated by the problem, this study examines the projector module by interpreting the vision-language semantic flow within MLLMs. Specifically, we trace back the semantic relevance flow from generated language tokens to raw visual encoder patches and the intermediate outputs produced by projectors. Our findings reveal that compressive projectors (e.g., QFormer), abstract visual patches into a limited set of semantic concepts, such as objects or attributes, resulting in a 'double abstraction' phenomenon. This involves a first visual semantic abstraction by the projector referring to pre-defined query tokens, and a second extraction by the LLM based on text instructions. The double abstraction is inefficient in training and will result in cumulative vision semantics deficiency. To mitigate this issue, we propose the key insight of 'Decouple Compression from Abstraction (DeCo), that is compressing the visual token number at the patch level by projectors and allowing the LLM to handle visual semantic abstraction entirely. Consequently, we adopt a simple compressor, i.e., 2D Adaptive Pooling, to downsample visual patches in a parameter-free manner. Empirical evaluation demonstrates that DeCo surpasses traditional compressive projectors regarding both performance and efficiency. It achieves performance gains of 0.9%, 7.1%, and 2.9% across the MLLM Benchmarks, Visual Localization, and Open-ended VQA tasks with fewer trainable parameters and faster convergence speed.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.20985
- https://arxiv.org/pdf/2405.20985
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399317923
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399317923Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.20985Digital Object Identifier
- Title
-
DeCo: Decoupling Token Compression from Semantic Abstraction in Multimodal Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-31Full publication date if available
- Authors
-
Linli Yao, Lei Li, Shuhuai Ren, Lean Wang, Yuanxin Liu, Xu Sun, Lu HouList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.20985Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.20985Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.20985Direct OA link when available
- Concepts
-
Computer science, Abstraction, Decoupling (probability), Security token, Natural language processing, Computer network, Philosophy, Engineering, Control engineering, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399317923 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.20985 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.20985 |
| ids.openalex | https://openalex.org/W4399317923 |
| fwci | |
| type | preprint |
| title | DeCo: Decoupling Token Compression from Semantic Abstraction in Multimodal Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9707000255584717 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9682999849319458 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7054464817047119 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C124304363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5923159122467041 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q673661 |
| concepts[1].display_name | Abstraction |
| concepts[2].id | https://openalex.org/C205606062 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5734971761703491 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5249645 |
| concepts[2].display_name | Decoupling (probability) |
| concepts[3].id | https://openalex.org/C48145219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5248311161994934 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[3].display_name | Security token |
| concepts[4].id | https://openalex.org/C204321447 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33683663606643677 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[4].display_name | Natural language processing |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.09804937243461609 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| concepts[6].id | https://openalex.org/C138885662 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0813058614730835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[6].display_name | Philosophy |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.06183898448944092 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C133731056 |
| concepts[8].level | 1 |
| concepts[8].score | 0.044816941022872925 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4917288 |
| concepts[8].display_name | Control engineering |
| concepts[9].id | https://openalex.org/C111472728 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[9].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7054464817047119 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/abstraction |
| keywords[1].score | 0.5923159122467041 |
| keywords[1].display_name | Abstraction |
| keywords[2].id | https://openalex.org/keywords/decoupling |
| keywords[2].score | 0.5734971761703491 |
| keywords[2].display_name | Decoupling (probability) |
| keywords[3].id | https://openalex.org/keywords/security-token |
| keywords[3].score | 0.5248311161994934 |
| keywords[3].display_name | Security token |
| keywords[4].id | https://openalex.org/keywords/natural-language-processing |
| keywords[4].score | 0.33683663606643677 |
| keywords[4].display_name | Natural language processing |
| keywords[5].id | https://openalex.org/keywords/computer-network |
| keywords[5].score | 0.09804937243461609 |
| keywords[5].display_name | Computer network |
| keywords[6].id | https://openalex.org/keywords/philosophy |
| keywords[6].score | 0.0813058614730835 |
| keywords[6].display_name | Philosophy |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.06183898448944092 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/control-engineering |
| keywords[8].score | 0.044816941022872925 |
| keywords[8].display_name | Control engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.20985 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.20985 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.20985 |
| locations[1].id | doi:10.48550/arxiv.2405.20985 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.20985 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5035307582 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Linli Yao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yao, Linli |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100658983 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5062-3538 |
| authorships[1].author.display_name | Lei Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Lei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101030723 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-9998-864X |
| authorships[2].author.display_name | Shuhuai Ren |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ren, Shuhuai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5034611488 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Lean Wang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wang, Lean |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5044541656 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0673-4887 |
| authorships[4].author.display_name | Yuanxin Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Yuanxin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5113863473 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xu Sun |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sun, Xu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100963876 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Lu Hou |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Hou, Lu |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.20985 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-06-04T00:00:00 |
| display_name | DeCo: Decoupling Token Compression from Semantic Abstraction in Multimodal Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9707000255584717 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W4388335561, https://openalex.org/W2970530566, https://openalex.org/W4288261899, https://openalex.org/W4307309205, https://openalex.org/W2967478618, https://openalex.org/W4385009901, https://openalex.org/W4385572700, https://openalex.org/W2997152889 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.20985 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.20985 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.20985 |
| primary_location.id | pmh:oai:arXiv.org:2405.20985 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.20985 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.20985 |
| publication_date | 2024-05-31 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16, 100, 113, 119, 133, 199, 211 |
| abstract_inverted_index.2D | 203 |
| abstract_inverted_index.It | 228 |
| abstract_inverted_index.To | 158 |
| abstract_inverted_index.as | 15, 107 |
| abstract_inverted_index.at | 180 |
| abstract_inverted_index.be | 36 |
| abstract_inverted_index.by | 47, 56, 86, 124, 136, 184 |
| abstract_inverted_index.in | 19, 27, 112, 148, 153, 210 |
| abstract_inverted_index.is | 146, 174 |
| abstract_inverted_index.of | 25, 41, 103, 167, 232 |
| abstract_inverted_index.on | 43, 140 |
| abstract_inverted_index.or | 109 |
| abstract_inverted_index.to | 76, 128, 190, 206 |
| abstract_inverted_index.we | 65, 162, 197 |
| abstract_inverted_index.LLM | 138, 189 |
| abstract_inverted_index.Our | 88 |
| abstract_inverted_index.The | 0, 143 |
| abstract_inverted_index.VQA | 245 |
| abstract_inverted_index.and | 7, 10, 81, 132, 150, 186, 226, 235, 243, 251 |
| abstract_inverted_index.can | 34 |
| abstract_inverted_index.key | 165 |
| abstract_inverted_index.raw | 77 |
| abstract_inverted_index.set | 102 |
| abstract_inverted_index.the | 5, 23, 39, 48, 53, 58, 68, 82, 125, 137, 164, 176, 181, 188, 238 |
| abstract_inverted_index.2.9% | 236 |
| abstract_inverted_index.DeCo | 218 |
| abstract_inverted_index.MLLM | 239 |
| abstract_inverted_index.This | 117 |
| abstract_inverted_index.back | 67 |
| abstract_inverted_index.both | 224 |
| abstract_inverted_index.flow | 61, 71 |
| abstract_inverted_index.from | 38, 72, 170 |
| abstract_inverted_index.into | 99 |
| abstract_inverted_index.only | 35 |
| abstract_inverted_index.such | 106 |
| abstract_inverted_index.text | 141 |
| abstract_inverted_index.that | 91, 173, 217 |
| abstract_inverted_index.this | 50, 160 |
| abstract_inverted_index.will | 151 |
| abstract_inverted_index.with | 247 |
| abstract_inverted_index.0.9%, | 233 |
| abstract_inverted_index.7.1%, | 234 |
| abstract_inverted_index.MLLMs | 42 |
| abstract_inverted_index.adopt | 198 |
| abstract_inverted_index.based | 139 |
| abstract_inverted_index.fewer | 248 |
| abstract_inverted_index.first | 120 |
| abstract_inverted_index.gains | 231 |
| abstract_inverted_index.i.e., | 202 |
| abstract_inverted_index.level | 183 |
| abstract_inverted_index.patch | 182 |
| abstract_inverted_index.query | 130 |
| abstract_inverted_index.study | 51 |
| abstract_inverted_index.tasks | 246 |
| abstract_inverted_index.token | 178 |
| abstract_inverted_index.trace | 66 |
| abstract_inverted_index.which | 3, 32 |
| abstract_inverted_index.(e.g., | 94 |
| abstract_inverted_index.MLLMs. | 20, 63 |
| abstract_inverted_index.Visual | 241 |
| abstract_inverted_index.across | 237 |
| abstract_inverted_index.double | 144 |
| abstract_inverted_index.faster | 252 |
| abstract_inverted_index.handle | 191 |
| abstract_inverted_index.issue, | 161 |
| abstract_inverted_index.module | 55 |
| abstract_inverted_index.number | 179 |
| abstract_inverted_index.result | 152 |
| abstract_inverted_index.reveal | 90 |
| abstract_inverted_index.second | 134 |
| abstract_inverted_index.serves | 14 |
| abstract_inverted_index.simple | 200 |
| abstract_inverted_index.speed. | 254 |
| abstract_inverted_index.tasks. | 45 |
| abstract_inverted_index.tokens | 75 |
| abstract_inverted_index.vision | 6, 155 |
| abstract_inverted_index.visual | 1, 78, 97, 121, 177, 192, 208 |
| abstract_inverted_index.within | 62 |
| abstract_inverted_index.'double | 114 |
| abstract_inverted_index.(DeCo), | 172 |
| abstract_inverted_index.bridges | 4 |
| abstract_inverted_index.crucial | 17 |
| abstract_inverted_index.encoder | 79 |
| abstract_inverted_index.insight | 166 |
| abstract_inverted_index.limited | 101 |
| abstract_inverted_index.manner. | 213 |
| abstract_inverted_index.objects | 108 |
| abstract_inverted_index.outputs | 84 |
| abstract_inverted_index.patches | 80, 98, 209 |
| abstract_inverted_index.propose | 163 |
| abstract_inverted_index.remains | 30 |
| abstract_inverted_index.tokens, | 131 |
| abstract_inverted_index.Adaptive | 204 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.Pooling, | 205 |
| abstract_inverted_index.abstract | 96 |
| abstract_inverted_index.achieves | 229 |
| abstract_inverted_index.allowing | 187 |
| abstract_inverted_index.examines | 52 |
| abstract_inverted_index.findings | 89 |
| abstract_inverted_index.inferred | 37 |
| abstract_inverted_index.involves | 118 |
| abstract_inverted_index.language | 8, 74 |
| abstract_inverted_index.mitigate | 159 |
| abstract_inverted_index.problem, | 49 |
| abstract_inverted_index.produced | 85 |
| abstract_inverted_index.semantic | 60, 69, 104, 122, 193 |
| abstract_inverted_index.training | 149 |
| abstract_inverted_index.'Decouple | 168 |
| abstract_inverted_index.Empirical | 214 |
| abstract_inverted_index.Motivated | 46 |
| abstract_inverted_index.QFormer), | 95 |
| abstract_inverted_index.alignment | 29 |
| abstract_inverted_index.component | 18 |
| abstract_inverted_index.concepts, | 105 |
| abstract_inverted_index.currently | 33 |
| abstract_inverted_index.entirely. | 195 |
| abstract_inverted_index.generated | 73 |
| abstract_inverted_index.measuring | 22 |
| abstract_inverted_index.projector | 54, 126 |
| abstract_inverted_index.referring | 127 |
| abstract_inverted_index.regarding | 223 |
| abstract_inverted_index.relevance | 70 |
| abstract_inverted_index.resulting | 111 |
| abstract_inverted_index.semantics | 156 |
| abstract_inverted_index.surpasses | 219 |
| abstract_inverted_index.trainable | 249 |
| abstract_inverted_index.Open-ended | 244 |
| abstract_inverted_index.alignment, | 13 |
| abstract_inverted_index.cumulative | 154 |
| abstract_inverted_index.downsample | 207 |
| abstract_inverted_index.downstream | 44 |
| abstract_inverted_index.evaluation | 215 |
| abstract_inverted_index.extraction | 135 |
| abstract_inverted_index.modalities | 9 |
| abstract_inverted_index.parameters | 250 |
| abstract_inverted_index.projector, | 2 |
| abstract_inverted_index.projectors | 26, 93, 185, 222 |
| abstract_inverted_index.Abstraction | 171 |
| abstract_inverted_index.Benchmarks, | 240 |
| abstract_inverted_index.Compression | 169 |
| abstract_inverted_index.abstraction | 123, 145, 194 |
| abstract_inverted_index.attributes, | 110 |
| abstract_inverted_index.compressing | 175 |
| abstract_inverted_index.compressive | 92, 221 |
| abstract_inverted_index.compressor, | 201 |
| abstract_inverted_index.convergence | 253 |
| abstract_inverted_index.cross-modal | 12 |
| abstract_inverted_index.deficiency. | 157 |
| abstract_inverted_index.efficiency. | 227 |
| abstract_inverted_index.facilitates | 11 |
| abstract_inverted_index.inefficient | 147 |
| abstract_inverted_index.performance | 40, 225, 230 |
| abstract_inverted_index.phenomenon. | 116 |
| abstract_inverted_index.pre-defined | 129 |
| abstract_inverted_index.projectors. | 87 |
| abstract_inverted_index.traditional | 220 |
| abstract_inverted_index.abstraction' | 115 |
| abstract_inverted_index.demonstrates | 216 |
| abstract_inverted_index.intermediate | 83 |
| abstract_inverted_index.interpreting | 57 |
| abstract_inverted_index.Consequently, | 196 |
| abstract_inverted_index.Localization, | 242 |
| abstract_inverted_index.Specifically, | 64 |
| abstract_inverted_index.effectiveness | 24 |
| abstract_inverted_index.instructions. | 142 |
| abstract_inverted_index.parameter-free | 212 |
| abstract_inverted_index.under-explored, | 31 |
| abstract_inverted_index.vision-language | 28, 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |