DecoStrat: Leveraging the Capabilities of Language Models in D2T Generation via Decoding Framework Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/math12223596
Current language models have achieved remarkable success in NLP tasks. Nonetheless, individual decoding methods face difficulties in realizing the immense potential of these models. The challenge is primarily due to the lack of a decoding framework that can integrate language models and decoding methods. We introduce DecoStrat, which bridges the gap between language modeling and the decoding process in D2T generation. By leveraging language models, DecoStrat facilitates the exploration of alternative decoding methods tailored to specific tasks. We fine-tuned the model on the MultiWOZ dataset to meet task-specific requirements and employed it to generate output(s) through multiple interactive modules of the framework. The Director module orchestrates the decoding processes, engaging the Generator to produce output(s) text based on the selected decoding method and input data. The Manager module enforces a selection strategy, integrating Ranker and Selector to identify the optimal result. Evaluations on the stated dataset show that DecoStrat effectively produces a diverse and accurate output, with MBR variants consistently outperforming other methods. DecoStrat with the T5-small model surpasses some baseline frameworks. Generally, the findings highlight DecoStrat’s potential for optimizing decoding methods in diverse real-world applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math12223596
- https://www.mdpi.com/2227-7390/12/22/3596/pdf?version=1731838453
- OA Status
- gold
- Cited By
- 1
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404482210
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404482210Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math12223596Digital Object Identifier
- Title
-
DecoStrat: Leveraging the Capabilities of Language Models in D2T Generation via Decoding FrameworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-17Full publication date if available
- Authors
-
Elias Lemuye Jimale, Wenyu Chen, Mugahed A. Al–antari, Yeong Hyeon Gu, Victor Kwaku Agbesi, Wasif FerozeList of authors in order
- Landing page
-
https://doi.org/10.3390/math12223596Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-7390/12/22/3596/pdf?version=1731838453Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-7390/12/22/3596/pdf?version=1731838453Direct OA link when available
- Concepts
-
Decoding methods, Computer science, Computer architecture, Programming language, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404482210 |
|---|---|
| doi | https://doi.org/10.3390/math12223596 |
| ids.doi | https://doi.org/10.3390/math12223596 |
| ids.openalex | https://openalex.org/W4404482210 |
| fwci | 0.63877855 |
| type | article |
| title | DecoStrat: Leveraging the Capabilities of Language Models in D2T Generation via Decoding Framework |
| biblio.issue | 22 |
| biblio.volume | 12 |
| biblio.last_page | 3596 |
| biblio.first_page | 3596 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7651000022888184 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T12031 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6520000100135803 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Speech and dialogue systems |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.6509000062942505 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C57273362 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7329403162002563 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[0].display_name | Decoding methods |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7062549591064453 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C118524514 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3398725390434265 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q173212 |
| concepts[2].display_name | Computer architecture |
| concepts[3].id | https://openalex.org/C199360897 |
| concepts[3].level | 1 |
| concepts[3].score | 0.33110833168029785 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[3].display_name | Programming language |
| concepts[4].id | https://openalex.org/C76155785 |
| concepts[4].level | 1 |
| concepts[4].score | 0.1264331340789795 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[4].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/decoding-methods |
| keywords[0].score | 0.7329403162002563 |
| keywords[0].display_name | Decoding methods |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7062549591064453 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-architecture |
| keywords[2].score | 0.3398725390434265 |
| keywords[2].display_name | Computer architecture |
| keywords[3].id | https://openalex.org/keywords/programming-language |
| keywords[3].score | 0.33110833168029785 |
| keywords[3].display_name | Programming language |
| keywords[4].id | https://openalex.org/keywords/telecommunications |
| keywords[4].score | 0.1264331340789795 |
| keywords[4].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.3390/math12223596 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-7390/12/22/3596/pdf?version=1731838453 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math12223596 |
| locations[1].id | pmh:oai:doaj.org/article:68617c6c88f44935b5518b456a137536 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 12, Iss 22, p 3596 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/68617c6c88f44935b5518b456a137536 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5114427015 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Elias Lemuye Jimale |
| authorships[0].countries | CN, ET |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I865572129 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Electrical Engineering and Computing, Adama Science and Technology University, Adama 1888, Ethiopia |
| authorships[0].institutions[0].id | https://openalex.org/I150229711 |
| authorships[0].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[0].institutions[1].id | https://openalex.org/I865572129 |
| authorships[0].institutions[1].ror | https://ror.org/02ccba128 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I865572129 |
| authorships[0].institutions[1].country_code | ET |
| authorships[0].institutions[1].display_name | Adama Science and Technology University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Elias Lemuye Jimale |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China, School of Electrical Engineering and Computing, Adama Science and Technology University, Adama 1888, Ethiopia |
| authorships[1].author.id | https://openalex.org/A5100687323 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9933-8014 |
| authorships[1].author.display_name | Wenyu Chen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[1].institutions[0].id | https://openalex.org/I150229711 |
| authorships[1].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wenyu Chen |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[2].author.id | https://openalex.org/A5022092645 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4457-4407 |
| authorships[2].author.display_name | Mugahed A. Al–antari |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I28777354 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea |
| authorships[2].institutions[0].id | https://openalex.org/I28777354 |
| authorships[2].institutions[0].ror | https://ror.org/00aft1q37 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I28777354 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Sejong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mugahed A. Al-antari |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea |
| authorships[3].author.id | https://openalex.org/A5022731366 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0002-9386 |
| authorships[3].author.display_name | Yeong Hyeon Gu |
| authorships[3].countries | KR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I28777354 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea |
| authorships[3].institutions[0].id | https://openalex.org/I28777354 |
| authorships[3].institutions[0].ror | https://ror.org/00aft1q37 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I28777354 |
| authorships[3].institutions[0].country_code | KR |
| authorships[3].institutions[0].display_name | Sejong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yeong Hyeon Gu |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea |
| authorships[4].author.id | https://openalex.org/A5017252813 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0723-5008 |
| authorships[4].author.display_name | Victor Kwaku Agbesi |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[4].institutions[0].id | https://openalex.org/I150229711 |
| authorships[4].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Victor Kwaku Agbesi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[5].author.id | https://openalex.org/A5114427016 |
| authorships[5].author.orcid | https://orcid.org/0009-0004-7600-323X |
| authorships[5].author.display_name | Wasif Feroze |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| authorships[5].institutions[0].id | https://openalex.org/I150229711 |
| authorships[5].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wasif Feroze |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-7390/12/22/3596/pdf?version=1731838453 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | DecoStrat: Leveraging the Capabilities of Language Models in D2T Generation via Decoding Framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7651000022888184 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math12223596 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-7390/12/22/3596/pdf?version=1731838453 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math12223596 |
| primary_location.id | doi:10.3390/math12223596 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-7390/12/22/3596/pdf?version=1731838453 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math12223596 |
| publication_date | 2024-11-17 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2112824353, https://openalex.org/W4231288952, https://openalex.org/W2135363470, https://openalex.org/W2003170434, https://openalex.org/W2981780252, https://openalex.org/W2739874095, https://openalex.org/W3022814719, https://openalex.org/W6769627184, https://openalex.org/W2982399380, https://openalex.org/W4303856695, https://openalex.org/W4378377586, https://openalex.org/W6761551260, https://openalex.org/W4296713955, https://openalex.org/W3196347491, https://openalex.org/W3005440057, https://openalex.org/W3016531961, https://openalex.org/W6754937296, https://openalex.org/W2948665450, https://openalex.org/W4389009377, https://openalex.org/W3027871355, https://openalex.org/W2798664956, https://openalex.org/W2100238596, https://openalex.org/W3160224178, https://openalex.org/W4328099923, https://openalex.org/W2951038425, https://openalex.org/W3026997957, https://openalex.org/W3200663532, https://openalex.org/W2798493043, https://openalex.org/W2136657878, https://openalex.org/W4309137656, https://openalex.org/W2566623769, https://openalex.org/W3119783931, https://openalex.org/W4253090545, https://openalex.org/W2160233880, https://openalex.org/W2954460650, https://openalex.org/W2889263348, https://openalex.org/W3115021520, https://openalex.org/W6682631176, https://openalex.org/W2123301721, https://openalex.org/W1956340063, https://openalex.org/W3034557228, https://openalex.org/W3107855336, https://openalex.org/W2992347006, https://openalex.org/W2979826702, https://openalex.org/W3197574297, https://openalex.org/W3007894275, https://openalex.org/W1522301498, https://openalex.org/W2157331557 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 33, 129, 151 |
| abstract_inverted_index.By | 61 |
| abstract_inverted_index.We | 44, 77 |
| abstract_inverted_index.in | 7, 16, 58, 182 |
| abstract_inverted_index.is | 26 |
| abstract_inverted_index.it | 91 |
| abstract_inverted_index.of | 21, 32, 69, 99 |
| abstract_inverted_index.on | 81, 117, 142 |
| abstract_inverted_index.to | 29, 74, 85, 92, 112, 136 |
| abstract_inverted_index.D2T | 59 |
| abstract_inverted_index.MBR | 157 |
| abstract_inverted_index.NLP | 8 |
| abstract_inverted_index.The | 24, 102, 125 |
| abstract_inverted_index.and | 41, 54, 89, 122, 134, 153 |
| abstract_inverted_index.can | 37 |
| abstract_inverted_index.due | 28 |
| abstract_inverted_index.for | 178 |
| abstract_inverted_index.gap | 50 |
| abstract_inverted_index.the | 18, 30, 49, 55, 67, 79, 82, 100, 106, 110, 118, 138, 143, 165, 173 |
| abstract_inverted_index.face | 14 |
| abstract_inverted_index.have | 3 |
| abstract_inverted_index.lack | 31 |
| abstract_inverted_index.meet | 86 |
| abstract_inverted_index.show | 146 |
| abstract_inverted_index.some | 169 |
| abstract_inverted_index.text | 115 |
| abstract_inverted_index.that | 36, 147 |
| abstract_inverted_index.with | 156, 164 |
| abstract_inverted_index.based | 116 |
| abstract_inverted_index.data. | 124 |
| abstract_inverted_index.input | 123 |
| abstract_inverted_index.model | 80, 167 |
| abstract_inverted_index.other | 161 |
| abstract_inverted_index.these | 22 |
| abstract_inverted_index.which | 47 |
| abstract_inverted_index.Ranker | 133 |
| abstract_inverted_index.method | 121 |
| abstract_inverted_index.models | 2, 40 |
| abstract_inverted_index.module | 104, 127 |
| abstract_inverted_index.stated | 144 |
| abstract_inverted_index.tasks. | 9, 76 |
| abstract_inverted_index.Current | 0 |
| abstract_inverted_index.Manager | 126 |
| abstract_inverted_index.between | 51 |
| abstract_inverted_index.bridges | 48 |
| abstract_inverted_index.dataset | 84, 145 |
| abstract_inverted_index.diverse | 152, 183 |
| abstract_inverted_index.immense | 19 |
| abstract_inverted_index.methods | 13, 72, 181 |
| abstract_inverted_index.models, | 64 |
| abstract_inverted_index.models. | 23 |
| abstract_inverted_index.modules | 98 |
| abstract_inverted_index.optimal | 139 |
| abstract_inverted_index.output, | 155 |
| abstract_inverted_index.process | 57 |
| abstract_inverted_index.produce | 113 |
| abstract_inverted_index.result. | 140 |
| abstract_inverted_index.success | 6 |
| abstract_inverted_index.through | 95 |
| abstract_inverted_index.Director | 103 |
| abstract_inverted_index.MultiWOZ | 83 |
| abstract_inverted_index.Selector | 135 |
| abstract_inverted_index.T5-small | 166 |
| abstract_inverted_index.accurate | 154 |
| abstract_inverted_index.achieved | 4 |
| abstract_inverted_index.baseline | 170 |
| abstract_inverted_index.decoding | 12, 34, 42, 56, 71, 107, 120, 180 |
| abstract_inverted_index.employed | 90 |
| abstract_inverted_index.enforces | 128 |
| abstract_inverted_index.engaging | 109 |
| abstract_inverted_index.findings | 174 |
| abstract_inverted_index.generate | 93 |
| abstract_inverted_index.identify | 137 |
| abstract_inverted_index.language | 1, 39, 52, 63 |
| abstract_inverted_index.methods. | 43, 162 |
| abstract_inverted_index.modeling | 53 |
| abstract_inverted_index.multiple | 96 |
| abstract_inverted_index.produces | 150 |
| abstract_inverted_index.selected | 119 |
| abstract_inverted_index.specific | 75 |
| abstract_inverted_index.tailored | 73 |
| abstract_inverted_index.variants | 158 |
| abstract_inverted_index.DecoStrat | 65, 148, 163 |
| abstract_inverted_index.Generator | 111 |
| abstract_inverted_index.challenge | 25 |
| abstract_inverted_index.framework | 35 |
| abstract_inverted_index.highlight | 175 |
| abstract_inverted_index.integrate | 38 |
| abstract_inverted_index.introduce | 45 |
| abstract_inverted_index.output(s) | 94, 114 |
| abstract_inverted_index.potential | 20, 177 |
| abstract_inverted_index.primarily | 27 |
| abstract_inverted_index.realizing | 17 |
| abstract_inverted_index.selection | 130 |
| abstract_inverted_index.strategy, | 131 |
| abstract_inverted_index.surpasses | 168 |
| abstract_inverted_index.DecoStrat, | 46 |
| abstract_inverted_index.Generally, | 172 |
| abstract_inverted_index.fine-tuned | 78 |
| abstract_inverted_index.framework. | 101 |
| abstract_inverted_index.individual | 11 |
| abstract_inverted_index.leveraging | 62 |
| abstract_inverted_index.optimizing | 179 |
| abstract_inverted_index.processes, | 108 |
| abstract_inverted_index.real-world | 184 |
| abstract_inverted_index.remarkable | 5 |
| abstract_inverted_index.Evaluations | 141 |
| abstract_inverted_index.alternative | 70 |
| abstract_inverted_index.effectively | 149 |
| abstract_inverted_index.exploration | 68 |
| abstract_inverted_index.facilitates | 66 |
| abstract_inverted_index.frameworks. | 171 |
| abstract_inverted_index.generation. | 60 |
| abstract_inverted_index.integrating | 132 |
| abstract_inverted_index.interactive | 97 |
| abstract_inverted_index.Nonetheless, | 10 |
| abstract_inverted_index.consistently | 159 |
| abstract_inverted_index.difficulties | 15 |
| abstract_inverted_index.orchestrates | 105 |
| abstract_inverted_index.requirements | 88 |
| abstract_inverted_index.DecoStrat’s | 176 |
| abstract_inverted_index.applications. | 185 |
| abstract_inverted_index.outperforming | 160 |
| abstract_inverted_index.task-specific | 87 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5022092645, https://openalex.org/A5022731366, https://openalex.org/A5100687323 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I150229711, https://openalex.org/I28777354 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.73048516 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |