Deep Bayesian Active Learning for Accelerating Stochastic Simulation Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2106.02770
Stochastic simulations such as large-scale, spatiotemporal, age-structured epidemic models are computationally expensive at fine-grained resolution. While deep surrogate models can speed up the simulations, doing so for stochastic simulations and with active learning approaches is an underexplored area. We propose Interactive Neural Process (INP), a deep Bayesian active learning framework for learning deep surrogate models to accelerate stochastic simulations. INP consists of two components, a spatiotemporal surrogate model built upon Neural Process (NP) family and an acquisition function for active learning. For surrogate modeling, we develop Spatiotemporal Neural Process (STNP) to mimic the simulator dynamics. For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models. We perform a theoretical analysis and demonstrate that LIG reduces sample complexity compared with random sampling in high dimensions. We also conduct empirical studies on three complex spatiotemporal simulators for reaction diffusion, heat flow, and infectious disease. The results demonstrate that STNP outperforms the baselines in the offline learning setting and LIG achieves the state-of-the-art for Bayesian active learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2106.02770
- https://arxiv.org/pdf/2106.02770
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4291329331
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4291329331Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2106.02770Digital Object Identifier
- Title
-
Deep Bayesian Active Learning for Accelerating Stochastic SimulationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-05Full publication date if available
- Authors
-
Dongxia Wu, Matteo Chinazzi, Alessandro Vespignani, Yi-An Ma, Rose YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2106.02770Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2106.02770Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2106.02770Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Machine learning, Surrogate model, Deep learning, Bayesian probability, Bayesian inference, Artificial neural network, Bayesian optimization, Active learning (machine learning)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4291329331 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2106.02770 |
| ids.doi | https://doi.org/10.48550/arxiv.2106.02770 |
| ids.openalex | https://openalex.org/W4291329331 |
| fwci | |
| type | preprint |
| title | Deep Bayesian Active Learning for Accelerating Stochastic Simulation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9886999726295471 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.982200026512146 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T12814 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9803000092506409 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Gaussian Processes and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7228736877441406 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7132274508476257 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6824009418487549 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C131675550 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6113576889038086 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7646884 |
| concepts[3].display_name | Surrogate model |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6112061142921448 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C107673813 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5112059116363525 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[5].display_name | Bayesian probability |
| concepts[6].id | https://openalex.org/C160234255 |
| concepts[6].level | 3 |
| concepts[6].score | 0.49087291955947876 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[6].display_name | Bayesian inference |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4834809899330139 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C2778049539 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4625987112522125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[8].display_name | Bayesian optimization |
| concepts[9].id | https://openalex.org/C77967617 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4139830470085144 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[9].display_name | Active learning (machine learning) |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7228736877441406 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7132274508476257 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6824009418487549 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/surrogate-model |
| keywords[3].score | 0.6113576889038086 |
| keywords[3].display_name | Surrogate model |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.6112061142921448 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/bayesian-probability |
| keywords[5].score | 0.5112059116363525 |
| keywords[5].display_name | Bayesian probability |
| keywords[6].id | https://openalex.org/keywords/bayesian-inference |
| keywords[6].score | 0.49087291955947876 |
| keywords[6].display_name | Bayesian inference |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4834809899330139 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[8].score | 0.4625987112522125 |
| keywords[8].display_name | Bayesian optimization |
| keywords[9].id | https://openalex.org/keywords/active-learning |
| keywords[9].score | 0.4139830470085144 |
| keywords[9].display_name | Active learning (machine learning) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2106.02770 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2106.02770 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2106.02770 |
| locations[1].id | doi:10.48550/arxiv.2106.02770 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2106.02770 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100943740 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-5059-2395 |
| authorships[0].author.display_name | Dongxia Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wu, Dongxia |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5061488382 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5955-1929 |
| authorships[1].author.display_name | Matteo Chinazzi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chinazzi, Matteo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046546654 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3419-4205 |
| authorships[2].author.display_name | Alessandro Vespignani |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vespignani, Alessandro |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5041806431 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6074-6638 |
| authorships[3].author.display_name | Yi-An Ma |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ma, Yi-An |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057778679 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8491-7937 |
| authorships[4].author.display_name | Rose Yu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yu, Rose |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2106.02770 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Bayesian Active Learning for Accelerating Stochastic Simulation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9886999726295471 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W4380627621, https://openalex.org/W4292081304, https://openalex.org/W2950792054, https://openalex.org/W4237912051, https://openalex.org/W3187720583, https://openalex.org/W2407375987, https://openalex.org/W2505726097, https://openalex.org/W2010643158, https://openalex.org/W3049691116, https://openalex.org/W2106867672 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2106.02770 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2106.02770 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2106.02770 |
| primary_location.id | pmh:oai:arXiv.org:2106.02770 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2106.02770 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2106.02770 |
| publication_date | 2021-06-05 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 44, 64, 100, 119 |
| abstract_inverted_index.NP | 114 |
| abstract_inverted_index.We | 38, 117, 136 |
| abstract_inverted_index.an | 35, 75 |
| abstract_inverted_index.as | 3 |
| abstract_inverted_index.at | 12 |
| abstract_inverted_index.in | 109, 133, 162 |
| abstract_inverted_index.is | 34 |
| abstract_inverted_index.of | 61, 113 |
| abstract_inverted_index.on | 141 |
| abstract_inverted_index.so | 25 |
| abstract_inverted_index.to | 55, 90 |
| abstract_inverted_index.up | 21 |
| abstract_inverted_index.we | 84, 98 |
| abstract_inverted_index.For | 81, 95 |
| abstract_inverted_index.INP | 59 |
| abstract_inverted_index.LIG | 125, 168 |
| abstract_inverted_index.The | 154 |
| abstract_inverted_index.and | 29, 74, 122, 151, 167 |
| abstract_inverted_index.are | 9 |
| abstract_inverted_index.can | 19 |
| abstract_inverted_index.for | 26, 50, 78, 146, 172 |
| abstract_inverted_index.the | 22, 92, 110, 160, 163, 170 |
| abstract_inverted_index.two | 62 |
| abstract_inverted_index.(NP) | 72 |
| abstract_inverted_index.Gain | 106 |
| abstract_inverted_index.STNP | 158 |
| abstract_inverted_index.also | 137 |
| abstract_inverted_index.deep | 16, 45, 52 |
| abstract_inverted_index.heat | 149 |
| abstract_inverted_index.high | 134 |
| abstract_inverted_index.such | 2 |
| abstract_inverted_index.that | 124, 157 |
| abstract_inverted_index.upon | 69 |
| abstract_inverted_index.with | 30, 130 |
| abstract_inverted_index.While | 15 |
| abstract_inverted_index.area. | 37 |
| abstract_inverted_index.based | 115 |
| abstract_inverted_index.built | 68 |
| abstract_inverted_index.doing | 24 |
| abstract_inverted_index.flow, | 150 |
| abstract_inverted_index.mimic | 91 |
| abstract_inverted_index.model | 67 |
| abstract_inverted_index.novel | 101 |
| abstract_inverted_index.space | 112 |
| abstract_inverted_index.speed | 20 |
| abstract_inverted_index.three | 142 |
| abstract_inverted_index.(INP), | 43 |
| abstract_inverted_index.(LIG), | 107 |
| abstract_inverted_index.(STNP) | 89 |
| abstract_inverted_index.Latent | 104 |
| abstract_inverted_index.Neural | 41, 70, 87 |
| abstract_inverted_index.active | 31, 47, 79, 96, 174 |
| abstract_inverted_index.family | 73 |
| abstract_inverted_index.latent | 111 |
| abstract_inverted_index.models | 8, 18, 54 |
| abstract_inverted_index.random | 131 |
| abstract_inverted_index.sample | 127 |
| abstract_inverted_index.Process | 42, 71, 88 |
| abstract_inverted_index.complex | 143 |
| abstract_inverted_index.conduct | 138 |
| abstract_inverted_index.develop | 85 |
| abstract_inverted_index.models. | 116 |
| abstract_inverted_index.offline | 164 |
| abstract_inverted_index.perform | 118 |
| abstract_inverted_index.propose | 39, 99 |
| abstract_inverted_index.reduces | 126 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.setting | 166 |
| abstract_inverted_index.studies | 140 |
| abstract_inverted_index.Bayesian | 46, 173 |
| abstract_inverted_index.achieves | 169 |
| abstract_inverted_index.analysis | 121 |
| abstract_inverted_index.compared | 129 |
| abstract_inverted_index.consists | 60 |
| abstract_inverted_index.disease. | 153 |
| abstract_inverted_index.epidemic | 7 |
| abstract_inverted_index.function | 77 |
| abstract_inverted_index.learning | 32, 48, 51, 165 |
| abstract_inverted_index.reaction | 147 |
| abstract_inverted_index.sampling | 132 |
| abstract_inverted_index.baselines | 161 |
| abstract_inverted_index.dynamics. | 94 |
| abstract_inverted_index.empirical | 139 |
| abstract_inverted_index.expensive | 11 |
| abstract_inverted_index.framework | 49 |
| abstract_inverted_index.function, | 103 |
| abstract_inverted_index.learning, | 97 |
| abstract_inverted_index.learning. | 80, 175 |
| abstract_inverted_index.modeling, | 83 |
| abstract_inverted_index.simulator | 93 |
| abstract_inverted_index.surrogate | 17, 53, 66, 82 |
| abstract_inverted_index.Stochastic | 0 |
| abstract_inverted_index.accelerate | 56 |
| abstract_inverted_index.approaches | 33 |
| abstract_inverted_index.calculated | 108 |
| abstract_inverted_index.complexity | 128 |
| abstract_inverted_index.diffusion, | 148 |
| abstract_inverted_index.infectious | 152 |
| abstract_inverted_index.simulators | 145 |
| abstract_inverted_index.stochastic | 27, 57 |
| abstract_inverted_index.Information | 105 |
| abstract_inverted_index.Interactive | 40 |
| abstract_inverted_index.acquisition | 76, 102 |
| abstract_inverted_index.components, | 63 |
| abstract_inverted_index.demonstrate | 123, 156 |
| abstract_inverted_index.dimensions. | 135 |
| abstract_inverted_index.outperforms | 159 |
| abstract_inverted_index.resolution. | 14 |
| abstract_inverted_index.simulations | 1, 28 |
| abstract_inverted_index.theoretical | 120 |
| abstract_inverted_index.fine-grained | 13 |
| abstract_inverted_index.large-scale, | 4 |
| abstract_inverted_index.simulations, | 23 |
| abstract_inverted_index.simulations. | 58 |
| abstract_inverted_index.underexplored | 36 |
| abstract_inverted_index.Spatiotemporal | 86 |
| abstract_inverted_index.age-structured | 6 |
| abstract_inverted_index.spatiotemporal | 65, 144 |
| abstract_inverted_index.computationally | 10 |
| abstract_inverted_index.spatiotemporal, | 5 |
| abstract_inverted_index.state-of-the-art | 171 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |