Deep Bayesian Active Learning for Accelerating Stochastic Simulation Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1145/3580305.3599300
Stochastic simulations such as large-scale, spatiotemporal, age-structured epidemic models are computationally expensive at fine-grained resolution. While deep surrogate models can speed up the simulations, doing so for stochastic simulations and with active learning approaches is an underexplored area. We propose Interactive Neural Process (INP), a deep Bayesian active learning framework for learning deep surrogate models to accelerate stochastic simulations. INP consists of two components, a spatiotemporal surrogate model built upon Neural Process (NP) family and an acquisition function for active learning. For surrogate modeling, we develop Spatiotemporal Neural Process (STNP) to mimic the simulator dynamics. For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models. We perform a theoretical analysis and demonstrate that LIG reduces sample complexity compared with random sampling in high dimensions. We also conduct empirical studies on three complex spatiotemporal simulators for reaction diffusion, heat flow, and infectious disease. The results demonstrate that STNP outperforms the baselines in the offline learning setting and LIG achieves the state-of-the-art for Bayesian active learning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3580305.3599300
- https://dl.acm.org/doi/pdf/10.1145/3580305.3599300
- OA Status
- gold
- Cited By
- 3
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385568448
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385568448Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3580305.3599300Digital Object Identifier
- Title
-
Deep Bayesian Active Learning for Accelerating Stochastic SimulationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-04Full publication date if available
- Authors
-
Dongxia Wu, Ruijia Niu, Matteo Chinazzi, Alessandro Vespignani, Yi-An Ma, Rose YuList of authors in order
- Landing page
-
https://doi.org/10.1145/3580305.3599300Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3580305.3599300Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3580305.3599300Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Surrogate model, Deep learning, Bayesian optimization, Artificial neural network, Bayesian probability, Bayesian inference, Active learning (machine learning)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385568448 |
|---|---|
| doi | https://doi.org/10.1145/3580305.3599300 |
| ids.doi | https://doi.org/10.1145/3580305.3599300 |
| ids.openalex | https://openalex.org/W4385568448 |
| fwci | 0.76632866 |
| type | article |
| title | Deep Bayesian Active Learning for Accelerating Stochastic Simulation |
| awards[0].id | https://openalex.org/G1965887439 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2134274, 2146343, 2134209, 2112665 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2569 |
| biblio.first_page | 2559 |
| topics[0].id | https://openalex.org/T12072 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning and Algorithms |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9925000071525574 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T12535 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9900000095367432 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and Data Classification |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320308737 |
| funders[1].ror | https://ror.org/01zbnvs85 |
| funders[1].display_name | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7491950988769531 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7263950705528259 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6788296699523926 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C131675550 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6306442618370056 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7646884 |
| concepts[3].display_name | Surrogate model |
| concepts[4].id | https://openalex.org/C108583219 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6206939220428467 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[4].display_name | Deep learning |
| concepts[5].id | https://openalex.org/C2778049539 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4903147518634796 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17002908 |
| concepts[5].display_name | Bayesian optimization |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48447632789611816 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C107673813 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47007066011428833 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[7].display_name | Bayesian probability |
| concepts[8].id | https://openalex.org/C160234255 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4644693434238434 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[8].display_name | Bayesian inference |
| concepts[9].id | https://openalex.org/C77967617 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43403416872024536 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[9].display_name | Active learning (machine learning) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7491950988769531 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7263950705528259 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6788296699523926 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/surrogate-model |
| keywords[3].score | 0.6306442618370056 |
| keywords[3].display_name | Surrogate model |
| keywords[4].id | https://openalex.org/keywords/deep-learning |
| keywords[4].score | 0.6206939220428467 |
| keywords[4].display_name | Deep learning |
| keywords[5].id | https://openalex.org/keywords/bayesian-optimization |
| keywords[5].score | 0.4903147518634796 |
| keywords[5].display_name | Bayesian optimization |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.48447632789611816 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/bayesian-probability |
| keywords[7].score | 0.47007066011428833 |
| keywords[7].display_name | Bayesian probability |
| keywords[8].id | https://openalex.org/keywords/bayesian-inference |
| keywords[8].score | 0.4644693434238434 |
| keywords[8].display_name | Bayesian inference |
| keywords[9].id | https://openalex.org/keywords/active-learning |
| keywords[9].score | 0.43403416872024536 |
| keywords[9].display_name | Active learning (machine learning) |
| language | en |
| locations[0].id | doi:10.1145/3580305.3599300 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3580305.3599300 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| locations[0].landing_page_url | https://doi.org/10.1145/3580305.3599300 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5036326217 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2412-6049 |
| authorships[0].author.display_name | Dongxia Wu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[0].affiliations[0].raw_affiliation_string | University of California, San Diego, La Jolla, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I36258959 |
| authorships[0].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, San Diego |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dongxia Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of California, San Diego, La Jolla, CA, USA |
| authorships[1].author.id | https://openalex.org/A5102729069 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-8587-6208 |
| authorships[1].author.display_name | Ruijia Niu |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[1].affiliations[0].raw_affiliation_string | University of California, San Diego, La Jolla, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I36258959 |
| authorships[1].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of California, San Diego |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruijia Niu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of California, San Diego, La Jolla, CA, USA |
| authorships[2].author.id | https://openalex.org/A5061488382 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5955-1929 |
| authorships[2].author.display_name | Matteo Chinazzi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[2].affiliations[0].raw_affiliation_string | Northeastern University, Boston, MA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I12912129 |
| authorships[2].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Matteo Chinazzi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Northeastern University, Boston, MA, USA |
| authorships[3].author.id | https://openalex.org/A5046546654 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3419-4205 |
| authorships[3].author.display_name | Alessandro Vespignani |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I12912129 |
| authorships[3].affiliations[0].raw_affiliation_string | Northeastern University, Boston, MA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I12912129 |
| authorships[3].institutions[0].ror | https://ror.org/04t5xt781 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I12912129 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alessandro Vespignani |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Northeastern University, Boston, MA, USA |
| authorships[4].author.id | https://openalex.org/A5041806431 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6074-6638 |
| authorships[4].author.display_name | Yi-An Ma |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[4].affiliations[0].raw_affiliation_string | University of California, San Diego, La Jolla, CA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I36258959 |
| authorships[4].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of California, San Diego |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yi-An Ma |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of California, San Diego, La Jolla, CA, USA |
| authorships[5].author.id | https://openalex.org/A5057778679 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8491-7937 |
| authorships[5].author.display_name | Rose Yu |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[5].affiliations[0].raw_affiliation_string | University of California, San Diego, La Jolla, CA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I36258959 |
| authorships[5].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of California, San Diego |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rose Yu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University of California, San Diego, La Jolla, CA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3580305.3599300 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Bayesian Active Learning for Accelerating Stochastic Simulation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12072 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning and Algorithms |
| related_works | https://openalex.org/W4380075502, https://openalex.org/W4223943233, https://openalex.org/W4312200629, https://openalex.org/W4360585206, https://openalex.org/W3199608561, https://openalex.org/W4364306694, https://openalex.org/W2597787948, https://openalex.org/W3047894882, https://openalex.org/W3208584567, https://openalex.org/W4322750901 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3580305.3599300 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3580305.3599300 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3580305.3599300 |
| primary_location.id | doi:10.1145/3580305.3599300 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3580305.3599300 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
| primary_location.landing_page_url | https://doi.org/10.1145/3580305.3599300 |
| publication_date | 2023-08-04 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2570764145, https://openalex.org/W2167154952, https://openalex.org/W3034246913, https://openalex.org/W3014022531, https://openalex.org/W2082413592, https://openalex.org/W2974527409, https://openalex.org/W2192203593, https://openalex.org/W6765735989, https://openalex.org/W4238059556, https://openalex.org/W3080930191, https://openalex.org/W2962790412, https://openalex.org/W2788134583, https://openalex.org/W2751802138, https://openalex.org/W2991044292, https://openalex.org/W4212774754, https://openalex.org/W2911495555, https://openalex.org/W4211042066, https://openalex.org/W2970479204, https://openalex.org/W4244038801, https://openalex.org/W1525526370, https://openalex.org/W3101687079, https://openalex.org/W2560674852 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 44, 64, 100, 119 |
| abstract_inverted_index.NP | 114 |
| abstract_inverted_index.We | 38, 117, 136 |
| abstract_inverted_index.an | 35, 75 |
| abstract_inverted_index.as | 3 |
| abstract_inverted_index.at | 12 |
| abstract_inverted_index.in | 109, 133, 162 |
| abstract_inverted_index.is | 34 |
| abstract_inverted_index.of | 61, 113 |
| abstract_inverted_index.on | 141 |
| abstract_inverted_index.so | 25 |
| abstract_inverted_index.to | 55, 90 |
| abstract_inverted_index.up | 21 |
| abstract_inverted_index.we | 84, 98 |
| abstract_inverted_index.For | 81, 95 |
| abstract_inverted_index.INP | 59 |
| abstract_inverted_index.LIG | 125, 168 |
| abstract_inverted_index.The | 154 |
| abstract_inverted_index.and | 29, 74, 122, 151, 167 |
| abstract_inverted_index.are | 9 |
| abstract_inverted_index.can | 19 |
| abstract_inverted_index.for | 26, 50, 78, 146, 172 |
| abstract_inverted_index.the | 22, 92, 110, 160, 163, 170 |
| abstract_inverted_index.two | 62 |
| abstract_inverted_index.(NP) | 72 |
| abstract_inverted_index.Gain | 106 |
| abstract_inverted_index.STNP | 158 |
| abstract_inverted_index.also | 137 |
| abstract_inverted_index.deep | 16, 45, 52 |
| abstract_inverted_index.heat | 149 |
| abstract_inverted_index.high | 134 |
| abstract_inverted_index.such | 2 |
| abstract_inverted_index.that | 124, 157 |
| abstract_inverted_index.upon | 69 |
| abstract_inverted_index.with | 30, 130 |
| abstract_inverted_index.While | 15 |
| abstract_inverted_index.area. | 37 |
| abstract_inverted_index.based | 115 |
| abstract_inverted_index.built | 68 |
| abstract_inverted_index.doing | 24 |
| abstract_inverted_index.flow, | 150 |
| abstract_inverted_index.mimic | 91 |
| abstract_inverted_index.model | 67 |
| abstract_inverted_index.novel | 101 |
| abstract_inverted_index.space | 112 |
| abstract_inverted_index.speed | 20 |
| abstract_inverted_index.three | 142 |
| abstract_inverted_index.(INP), | 43 |
| abstract_inverted_index.(LIG), | 107 |
| abstract_inverted_index.(STNP) | 89 |
| abstract_inverted_index.Latent | 104 |
| abstract_inverted_index.Neural | 41, 70, 87 |
| abstract_inverted_index.active | 31, 47, 79, 96, 174 |
| abstract_inverted_index.family | 73 |
| abstract_inverted_index.latent | 111 |
| abstract_inverted_index.models | 8, 18, 54 |
| abstract_inverted_index.random | 131 |
| abstract_inverted_index.sample | 127 |
| abstract_inverted_index.Process | 42, 71, 88 |
| abstract_inverted_index.complex | 143 |
| abstract_inverted_index.conduct | 138 |
| abstract_inverted_index.develop | 85 |
| abstract_inverted_index.models. | 116 |
| abstract_inverted_index.offline | 164 |
| abstract_inverted_index.perform | 118 |
| abstract_inverted_index.propose | 39, 99 |
| abstract_inverted_index.reduces | 126 |
| abstract_inverted_index.results | 155 |
| abstract_inverted_index.setting | 166 |
| abstract_inverted_index.studies | 140 |
| abstract_inverted_index.Bayesian | 46, 173 |
| abstract_inverted_index.achieves | 169 |
| abstract_inverted_index.analysis | 121 |
| abstract_inverted_index.compared | 129 |
| abstract_inverted_index.consists | 60 |
| abstract_inverted_index.disease. | 153 |
| abstract_inverted_index.epidemic | 7 |
| abstract_inverted_index.function | 77 |
| abstract_inverted_index.learning | 32, 48, 51, 165 |
| abstract_inverted_index.reaction | 147 |
| abstract_inverted_index.sampling | 132 |
| abstract_inverted_index.baselines | 161 |
| abstract_inverted_index.dynamics. | 94 |
| abstract_inverted_index.empirical | 139 |
| abstract_inverted_index.expensive | 11 |
| abstract_inverted_index.framework | 49 |
| abstract_inverted_index.function, | 103 |
| abstract_inverted_index.learning, | 97 |
| abstract_inverted_index.learning. | 80, 175 |
| abstract_inverted_index.modeling, | 83 |
| abstract_inverted_index.simulator | 93 |
| abstract_inverted_index.surrogate | 17, 53, 66, 82 |
| abstract_inverted_index.Stochastic | 0 |
| abstract_inverted_index.accelerate | 56 |
| abstract_inverted_index.approaches | 33 |
| abstract_inverted_index.calculated | 108 |
| abstract_inverted_index.complexity | 128 |
| abstract_inverted_index.diffusion, | 148 |
| abstract_inverted_index.infectious | 152 |
| abstract_inverted_index.simulators | 145 |
| abstract_inverted_index.stochastic | 27, 57 |
| abstract_inverted_index.Information | 105 |
| abstract_inverted_index.Interactive | 40 |
| abstract_inverted_index.acquisition | 76, 102 |
| abstract_inverted_index.components, | 63 |
| abstract_inverted_index.demonstrate | 123, 156 |
| abstract_inverted_index.dimensions. | 135 |
| abstract_inverted_index.outperforms | 159 |
| abstract_inverted_index.resolution. | 14 |
| abstract_inverted_index.simulations | 1, 28 |
| abstract_inverted_index.theoretical | 120 |
| abstract_inverted_index.fine-grained | 13 |
| abstract_inverted_index.large-scale, | 4 |
| abstract_inverted_index.simulations, | 23 |
| abstract_inverted_index.simulations. | 58 |
| abstract_inverted_index.underexplored | 36 |
| abstract_inverted_index.Spatiotemporal | 86 |
| abstract_inverted_index.age-structured | 6 |
| abstract_inverted_index.spatiotemporal | 65, 144 |
| abstract_inverted_index.computationally | 10 |
| abstract_inverted_index.spatiotemporal, | 5 |
| abstract_inverted_index.state-of-the-art | 171 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.73420476 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |