Deep Clinical Phenotyping Enhances Robustness of Prognostic Prediction to Next Level in Sepsis: A Real-World Retrospective Multi-Cohort Study with External Validation Article Swipe
Hao Yang
,
Chi Zhang
,
Jia Liu
,
Hui Zong
,
Rongrong Wu
,
Yi Zhou
,
Jiakun Li
,
Erman Wu
,
Alejandro Pazos
,
Bairong Shen
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5127908
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5127908
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5127908
- OA Status
- green
- Cited By
- 1
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407318719
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407318719Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5127908Digital Object Identifier
- Title
-
Deep Clinical Phenotyping Enhances Robustness of Prognostic Prediction to Next Level in Sepsis: A Real-World Retrospective Multi-Cohort Study with External ValidationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Hao Yang, Chi Zhang, Jia Liu, Hui Zong, Rongrong Wu, Yi Zhou, Jiakun Li, Erman Wu, Alejandro Pazos, Bairong ShenList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5127908Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5127908Direct OA link when available
- Concepts
-
Robustness (evolution), Retrospective cohort study, Cohort, Medicine, Sepsis, Computer science, Artificial intelligence, Data mining, Internal medicine, Biology, Biochemistry, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407318719 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5127908 |
| ids.doi | https://doi.org/10.2139/ssrn.5127908 |
| ids.openalex | https://openalex.org/W4407318719 |
| fwci | 4.6013505 |
| type | preprint |
| title | Deep Clinical Phenotyping Enhances Robustness of Prognostic Prediction to Next Level in Sepsis: A Real-World Retrospective Multi-Cohort Study with External Validation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10218 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Sepsis Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T13702 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9886999726295471 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning in Healthcare |
| topics[2].id | https://openalex.org/T12167 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9829999804496765 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1308 |
| topics[2].subfield.display_name | Clinical Biochemistry |
| topics[2].display_name | Bacterial Identification and Susceptibility Testing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C63479239 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7439121603965759 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[0].display_name | Robustness (evolution) |
| concepts[1].id | https://openalex.org/C167135981 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5958237648010254 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2146302 |
| concepts[1].display_name | Retrospective cohort study |
| concepts[2].id | https://openalex.org/C72563966 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5098080039024353 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[2].display_name | Cohort |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.47890058159828186 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C2778384902 |
| concepts[4].level | 2 |
| concepts[4].score | 0.42236992716789246 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q183134 |
| concepts[4].display_name | Sepsis |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.40230175852775574 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3476852774620056 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3436279892921448 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C126322002 |
| concepts[8].level | 1 |
| concepts[8].score | 0.28985142707824707 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[8].display_name | Internal medicine |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.07949501276016235 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/robustness |
| keywords[0].score | 0.7439121603965759 |
| keywords[0].display_name | Robustness (evolution) |
| keywords[1].id | https://openalex.org/keywords/retrospective-cohort-study |
| keywords[1].score | 0.5958237648010254 |
| keywords[1].display_name | Retrospective cohort study |
| keywords[2].id | https://openalex.org/keywords/cohort |
| keywords[2].score | 0.5098080039024353 |
| keywords[2].display_name | Cohort |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.47890058159828186 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/sepsis |
| keywords[4].score | 0.42236992716789246 |
| keywords[4].display_name | Sepsis |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.40230175852775574 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3476852774620056 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3436279892921448 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/internal-medicine |
| keywords[8].score | 0.28985142707824707 |
| keywords[8].display_name | Internal medicine |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.07949501276016235 |
| keywords[9].display_name | Biology |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5127908 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5127908 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5005698391 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8506-7295 |
| authorships[0].author.display_name | Hao Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao Yang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100458232 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1911-3446 |
| authorships[1].author.display_name | Chi Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chi Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100454297 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jia Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiaxi Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5085598914 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4263-9633 |
| authorships[3].author.display_name | Hui Zong |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hui Zong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5033535544 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3876-1609 |
| authorships[4].author.display_name | Rongrong Wu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Rongrong Wu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5012286480 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7524-4208 |
| authorships[5].author.display_name | Yi Zhou |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yi Zhou |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5035103874 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7361-3372 |
| authorships[6].author.display_name | Jiakun Li |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jiakun Li |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5113004897 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Erman Wu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Erman Wu |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5006332127 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2324-238X |
| authorships[8].author.display_name | Alejandro Pazos |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Alejandro Pazos Sierra |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5081095213 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-2899-1531 |
| authorships[9].author.display_name | Bairong Shen |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Bairong Shen |
| authorships[9].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5127908 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Clinical Phenotyping Enhances Robustness of Prognostic Prediction to Next Level in Sepsis: A Real-World Retrospective Multi-Cohort Study with External Validation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10218 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Sepsis Diagnosis and Treatment |
| related_works | https://openalex.org/W3215560449, https://openalex.org/W3030236844, https://openalex.org/W2832459556, https://openalex.org/W2794721326, https://openalex.org/W4237737355, https://openalex.org/W1520457732, https://openalex.org/W4385384888, https://openalex.org/W2979695286, https://openalex.org/W1998617258, https://openalex.org/W2891360831 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5127908 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5127908 |
| primary_location.id | doi:10.2139/ssrn.5127908 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5127908 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2280404143, https://openalex.org/W2019582965, https://openalex.org/W2410175006, https://openalex.org/W2282181907, https://openalex.org/W1898928487, https://openalex.org/W2055905393, https://openalex.org/W2068316060, https://openalex.org/W4401576307, https://openalex.org/W2039133703, https://openalex.org/W2255466643, https://openalex.org/W4224137971, https://openalex.org/W2618851150, https://openalex.org/W3000208741, https://openalex.org/W3036652698, https://openalex.org/W2528950752, https://openalex.org/W2055865901, https://openalex.org/W2148143831, https://openalex.org/W4226271739, https://openalex.org/W2095649738, https://openalex.org/W2615528965, https://openalex.org/W3210437518, https://openalex.org/W3124926562, https://openalex.org/W3174786846, https://openalex.org/W4399857137, https://openalex.org/W2800030655, https://openalex.org/W3176273571, https://openalex.org/W2727475156, https://openalex.org/W2998677689, https://openalex.org/W3081732342, https://openalex.org/W4224235939, https://openalex.org/W2010321340, https://openalex.org/W2949069845, https://openalex.org/W2592468462, https://openalex.org/W2063022740, https://openalex.org/W2914463238, https://openalex.org/W4362506020, https://openalex.org/W4381053485, https://openalex.org/W2972719726, https://openalex.org/W4390546814, https://openalex.org/W4385245566, https://openalex.org/W4308909683, https://openalex.org/W2962862931, https://openalex.org/W4387872454, https://openalex.org/W3037881545 |
| referenced_works_count | 44 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.82454355 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |