Deep Convolution Neural Networks for Automatic Eyeglasses Removal Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.12783/dtcse/aiea2017/14988
The facial image under eyeglasses occlusion can degrade face recognition performance. Inspired by the success of deep convolutional neural networks (DCNN) on super resolution, in this paper, a method based on deep convolutional neural network is developed for automatic eyeglasses removal from frontal facial images. To remove eyeglasses on facial images, the proposed approach applied deep convolution neural networks (end-to-end DCNN) to reconstruct the eyeglasses region. We adopt the deep convolutional neural networks (DCNN) approach is designed and trained to learn the mapping between pairs of face images with or without eyeglasses from a large face database in video surveillance. The extensive experiments show that the proposed algorithm can effectively remove eyeglasses, and also can keep the stability of face recognition under eyeglasses on occlusion.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.12783/dtcse/aiea2017/14988
- http://dpi-proceedings.com/index.php/dtcse/article/download/14988/14501
- OA Status
- bronze
- Cited By
- 7
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2766634277
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2766634277Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.12783/dtcse/aiea2017/14988Digital Object Identifier
- Title
-
Deep Convolution Neural Networks for Automatic Eyeglasses RemovalWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-10-31Full publication date if available
- Authors
-
Liang Mao, Yueju Xue, Kunnan Xue, Aqing YangList of authors in order
- Landing page
-
https://doi.org/10.12783/dtcse/aiea2017/14988Publisher landing page
- PDF URL
-
https://dpi-proceedings.com/index.php/dtcse/article/download/14988/14501Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://dpi-proceedings.com/index.php/dtcse/article/download/14988/14501Direct OA link when available
- Concepts
-
Convolutional neural network, Artificial intelligence, Computer science, Face (sociological concept), Convolution (computer science), Deep learning, Computer vision, Pattern recognition (psychology), Facial recognition system, Artificial neural network, Image (mathematics), Social science, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2022: 1, 2021: 1, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2766634277 |
|---|---|
| doi | https://doi.org/10.12783/dtcse/aiea2017/14988 |
| ids.doi | https://doi.org/10.12783/dtcse/aiea2017/14988 |
| ids.mag | 2766634277 |
| ids.openalex | https://openalex.org/W2766634277 |
| fwci | 0.38133066 |
| type | article |
| title | Deep Convolution Neural Networks for Automatic Eyeglasses Removal |
| biblio.issue | aiea |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T13114 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Image Processing Techniques and Applications |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9926000237464905 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.874326765537262 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.8505740165710449 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7901521921157837 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2779304628 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6882648468017578 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[3].display_name | Face (sociological concept) |
| concepts[4].id | https://openalex.org/C45347329 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6664600968360901 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[4].display_name | Convolution (computer science) |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6113951206207275 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.6018044948577881 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4994237422943115 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C31510193 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4916229844093323 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1192553 |
| concepts[8].display_name | Facial recognition system |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4520426392555237 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4163650870323181 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C36289849 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[11].display_name | Social science |
| concepts[12].id | https://openalex.org/C144024400 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[12].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.874326765537262 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.8505740165710449 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7901521921157837 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/face |
| keywords[3].score | 0.6882648468017578 |
| keywords[3].display_name | Face (sociological concept) |
| keywords[4].id | https://openalex.org/keywords/convolution |
| keywords[4].score | 0.6664600968360901 |
| keywords[4].display_name | Convolution (computer science) |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.6113951206207275 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.6018044948577881 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.4994237422943115 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/facial-recognition-system |
| keywords[8].score | 0.4916229844093323 |
| keywords[8].display_name | Facial recognition system |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.4520426392555237 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.4163650870323181 |
| keywords[10].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.12783/dtcse/aiea2017/14988 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764550102 |
| locations[0].source.issn | 2475-8841 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2475-8841 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DEStech Transactions on Computer Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4322697008 |
| locations[0].source.host_organization_name | Destech Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322697008 |
| locations[0].source.host_organization_lineage_names | Destech Publications |
| locations[0].license | |
| locations[0].pdf_url | http://dpi-proceedings.com/index.php/dtcse/article/download/14988/14501 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | DEStech Transactions on Computer Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.12783/dtcse/aiea2017/14988 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5080252955 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7112-9421 |
| authorships[0].author.display_name | Liang Mao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | MAO LIANG |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100518357 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yueju Xue |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | YUEJU XUE |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5015827171 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kunnan Xue |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | KUNNAN XUE |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5109405883 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aqing Yang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | AQING YANG |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://dpi-proceedings.com/index.php/dtcse/article/download/14988/14501 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Convolution Neural Networks for Automatic Eyeglasses Removal |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W3167935049, https://openalex.org/W2964954556, https://openalex.org/W3029198973, https://openalex.org/W3019910406, https://openalex.org/W2098693229, https://openalex.org/W2384651879 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.12783/dtcse/aiea2017/14988 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764550102 |
| best_oa_location.source.issn | 2475-8841 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2475-8841 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DEStech Transactions on Computer Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4322697008 |
| best_oa_location.source.host_organization_name | Destech Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322697008 |
| best_oa_location.source.host_organization_lineage_names | Destech Publications |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://dpi-proceedings.com/index.php/dtcse/article/download/14988/14501 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | DEStech Transactions on Computer Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.12783/dtcse/aiea2017/14988 |
| primary_location.id | doi:10.12783/dtcse/aiea2017/14988 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764550102 |
| primary_location.source.issn | 2475-8841 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2475-8841 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DEStech Transactions on Computer Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4322697008 |
| primary_location.source.host_organization_name | Destech Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322697008 |
| primary_location.source.host_organization_lineage_names | Destech Publications |
| primary_location.license | |
| primary_location.pdf_url | http://dpi-proceedings.com/index.php/dtcse/article/download/14988/14501 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | DEStech Transactions on Computer Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.12783/dtcse/aiea2017/14988 |
| publication_date | 2017-10-31 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W1541748190, https://openalex.org/W2033721015, https://openalex.org/W1885185971, https://openalex.org/W2053209113, https://openalex.org/W2138360363, https://openalex.org/W1976948919, https://openalex.org/W2526792573 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 27, 93 |
| abstract_inverted_index.To | 45 |
| abstract_inverted_index.We | 66 |
| abstract_inverted_index.by | 12 |
| abstract_inverted_index.in | 24, 97 |
| abstract_inverted_index.is | 35, 75 |
| abstract_inverted_index.of | 15, 85, 118 |
| abstract_inverted_index.on | 21, 30, 48, 123 |
| abstract_inverted_index.or | 89 |
| abstract_inverted_index.to | 61, 79 |
| abstract_inverted_index.The | 0, 100 |
| abstract_inverted_index.and | 77, 112 |
| abstract_inverted_index.can | 6, 108, 114 |
| abstract_inverted_index.for | 37 |
| abstract_inverted_index.the | 13, 51, 63, 68, 81, 105, 116 |
| abstract_inverted_index.also | 113 |
| abstract_inverted_index.deep | 16, 31, 55, 69 |
| abstract_inverted_index.face | 8, 86, 95, 119 |
| abstract_inverted_index.from | 41, 92 |
| abstract_inverted_index.keep | 115 |
| abstract_inverted_index.show | 103 |
| abstract_inverted_index.that | 104 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.with | 88 |
| abstract_inverted_index.DCNN) | 60 |
| abstract_inverted_index.adopt | 67 |
| abstract_inverted_index.based | 29 |
| abstract_inverted_index.image | 2 |
| abstract_inverted_index.large | 94 |
| abstract_inverted_index.learn | 80 |
| abstract_inverted_index.pairs | 84 |
| abstract_inverted_index.super | 22 |
| abstract_inverted_index.under | 3, 121 |
| abstract_inverted_index.video | 98 |
| abstract_inverted_index.(DCNN) | 20, 73 |
| abstract_inverted_index.facial | 1, 43, 49 |
| abstract_inverted_index.images | 87 |
| abstract_inverted_index.method | 28 |
| abstract_inverted_index.neural | 18, 33, 57, 71 |
| abstract_inverted_index.paper, | 26 |
| abstract_inverted_index.remove | 46, 110 |
| abstract_inverted_index.applied | 54 |
| abstract_inverted_index.between | 83 |
| abstract_inverted_index.degrade | 7 |
| abstract_inverted_index.frontal | 42 |
| abstract_inverted_index.images, | 50 |
| abstract_inverted_index.images. | 44 |
| abstract_inverted_index.mapping | 82 |
| abstract_inverted_index.network | 34 |
| abstract_inverted_index.region. | 65 |
| abstract_inverted_index.removal | 40 |
| abstract_inverted_index.success | 14 |
| abstract_inverted_index.trained | 78 |
| abstract_inverted_index.without | 90 |
| abstract_inverted_index.Inspired | 11 |
| abstract_inverted_index.approach | 53, 74 |
| abstract_inverted_index.database | 96 |
| abstract_inverted_index.designed | 76 |
| abstract_inverted_index.networks | 19, 58, 72 |
| abstract_inverted_index.proposed | 52, 106 |
| abstract_inverted_index.algorithm | 107 |
| abstract_inverted_index.automatic | 38 |
| abstract_inverted_index.developed | 36 |
| abstract_inverted_index.extensive | 101 |
| abstract_inverted_index.occlusion | 5 |
| abstract_inverted_index.stability | 117 |
| abstract_inverted_index.eyeglasses | 4, 39, 47, 64, 91, 122 |
| abstract_inverted_index.occlusion. | 124 |
| abstract_inverted_index.(end-to-end | 59 |
| abstract_inverted_index.convolution | 56 |
| abstract_inverted_index.effectively | 109 |
| abstract_inverted_index.experiments | 102 |
| abstract_inverted_index.eyeglasses, | 111 |
| abstract_inverted_index.recognition | 9, 120 |
| abstract_inverted_index.reconstruct | 62 |
| abstract_inverted_index.resolution, | 23 |
| abstract_inverted_index.performance. | 10 |
| abstract_inverted_index.convolutional | 17, 32, 70 |
| abstract_inverted_index.surveillance. | 99 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.65262121 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |