Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud Image Classification Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.26599/bdma.2021.9020017
As a huge number of satellites revolve around the earth, a great probability exists to observe and determine the change phenomena on the earth through the analysis of satellite images on a real-time basis. Therefore, classifying satellite images plays strong assistance in remote sensing communities for predicting tropical cyclones. In this article, a classification approach is proposed using Deep Convolutional Neural Network (DCNN), comprising numerous layers, which extract the features through a downsampling process for classifying satellite cloud images. DCNN is trained marvelously on cloud images with an impressive amount of prediction accuracy. Delivery time decreases for testing images, whereas prediction accuracy increases using an appropriate deep convolutional network with a huge number of training dataset instances. The satellite images are taken from the Meteorological & Oceanographic Satellite Data Archival Centre, the organization is responsible for availing satellite cloud images of India and its subcontinent. The proposed cloud image classification shows 94% prediction accuracy with the DCNN framework.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.26599/bdma.2021.9020017
- https://ieeexplore.ieee.org/ielx7/8254253/9962810/09962954.pdf
- OA Status
- diamond
- Cited By
- 24
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4310295432
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4310295432Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.26599/bdma.2021.9020017Digital Object Identifier
- Title
-
Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud Image ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-24Full publication date if available
- Authors
-
Kalyan Kumar Jena, Sourav Kumar Bhoi, Soumya Ranjan Nayak, Ranjit Panigrahi, Akash Kumar BhoiList of authors in order
- Landing page
-
https://doi.org/10.26599/bdma.2021.9020017Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/8254253/9962810/09962954.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/8254253/9962810/09962954.pdfDirect OA link when available
- Concepts
-
Convolutional neural network, Cloud computing, Satellite, Computer science, Satellite imagery, Remote sensing, Artificial intelligence, Deep learning, Earth observation, Contextual image classification, Pattern recognition (psychology), Image (mathematics), Geography, Engineering, Aerospace engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 11, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4310295432 |
|---|---|
| doi | https://doi.org/10.26599/bdma.2021.9020017 |
| ids.doi | https://doi.org/10.26599/bdma.2021.9020017 |
| ids.openalex | https://openalex.org/W4310295432 |
| fwci | 2.95330914 |
| type | article |
| title | Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud Image Classification |
| biblio.issue | 1 |
| biblio.volume | 6 |
| biblio.last_page | 43 |
| biblio.first_page | 32 |
| topics[0].id | https://openalex.org/T11483 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9902999997138977 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Tropical and Extratropical Cyclones Research |
| topics[1].id | https://openalex.org/T11276 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9818000197410583 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Solar Radiation and Photovoltaics |
| topics[2].id | https://openalex.org/T11234 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9815000295639038 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Precipitation Measurement and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7915197014808655 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C79974875 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7737363576889038 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[1].display_name | Cloud computing |
| concepts[2].id | https://openalex.org/C19269812 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6945254802703857 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[2].display_name | Satellite |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6194838285446167 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2778102629 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6013278961181641 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q725252 |
| concepts[4].display_name | Satellite imagery |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5591543912887573 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5301476716995239 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5010485649108887 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C39399123 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4515390694141388 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1348989 |
| concepts[8].display_name | Earth observation |
| concepts[9].id | https://openalex.org/C75294576 |
| concepts[9].level | 3 |
| concepts[9].score | 0.43858349323272705 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5165192 |
| concepts[9].display_name | Contextual image classification |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.34353527426719666 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.25443336367607117 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1941136121749878 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.06703624129295349 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C146978453 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[14].display_name | Aerospace engineering |
| concepts[15].id | https://openalex.org/C111919701 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[15].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7915197014808655 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/cloud-computing |
| keywords[1].score | 0.7737363576889038 |
| keywords[1].display_name | Cloud computing |
| keywords[2].id | https://openalex.org/keywords/satellite |
| keywords[2].score | 0.6945254802703857 |
| keywords[2].display_name | Satellite |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6194838285446167 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/satellite-imagery |
| keywords[4].score | 0.6013278961181641 |
| keywords[4].display_name | Satellite imagery |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.5591543912887573 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5301476716995239 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5010485649108887 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/earth-observation |
| keywords[8].score | 0.4515390694141388 |
| keywords[8].display_name | Earth observation |
| keywords[9].id | https://openalex.org/keywords/contextual-image-classification |
| keywords[9].score | 0.43858349323272705 |
| keywords[9].display_name | Contextual image classification |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.34353527426719666 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.25443336367607117 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.1941136121749878 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.06703624129295349 |
| keywords[13].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.26599/bdma.2021.9020017 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210209060 |
| locations[0].source.issn | 2096-0654 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2096-0654 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Big Data Mining and Analytics |
| locations[0].source.host_organization | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_name | Tsinghua University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311901 |
| locations[0].source.host_organization_lineage_names | Tsinghua University Press |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/9962810/09962954.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Big Data Mining and Analytics |
| locations[0].landing_page_url | https://doi.org/10.26599/bdma.2021.9020017 |
| locations[1].id | pmh:oai:doaj.org/article:0e60497bbeda47dbae8b9797f28efbc9 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Big Data Mining and Analytics, Vol 6, Iss 1, Pp 32-43 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/0e60497bbeda47dbae8b9797f28efbc9 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072390737 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2476-5644 |
| authorships[0].author.display_name | Kalyan Kumar Jena |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2799452066 |
| authorships[0].affiliations[0].raw_affiliation_string | Parala Maharaja Engineering College,Department of Computer Science and Engineering,Berhampur,India,761003 |
| authorships[0].institutions[0].id | https://openalex.org/I2799452066 |
| authorships[0].institutions[0].ror | https://ror.org/034pbde03 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799452066, https://openalex.org/I33585257 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Maharaja Engineering College |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kalyan Kumar Jena |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Parala Maharaja Engineering College,Department of Computer Science and Engineering,Berhampur,India,761003 |
| authorships[1].author.id | https://openalex.org/A5044453219 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5173-3453 |
| authorships[1].author.display_name | Sourav Kumar Bhoi |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2799452066 |
| authorships[1].affiliations[0].raw_affiliation_string | Parala Maharaja Engineering College,Department of Computer Science and Engineering,Berhampur,India,761003 |
| authorships[1].institutions[0].id | https://openalex.org/I2799452066 |
| authorships[1].institutions[0].ror | https://ror.org/034pbde03 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799452066, https://openalex.org/I33585257 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Maharaja Engineering College |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sourav Kumar Bhoi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Parala Maharaja Engineering College,Department of Computer Science and Engineering,Berhampur,India,761003 |
| authorships[2].author.id | https://openalex.org/A5090967969 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4155-884X |
| authorships[2].author.display_name | Soumya Ranjan Nayak |
| authorships[2].affiliations[0].raw_affiliation_string | Amity School of Engineering and Technology, Amity University,Uttar Pradesh,India,201303 |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Soumya Ranjan Nayak |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Amity School of Engineering and Technology, Amity University,Uttar Pradesh,India,201303 |
| authorships[3].author.id | https://openalex.org/A5029475975 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6728-5977 |
| authorships[3].author.display_name | Ranjit Panigrahi |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I81433678 |
| authorships[3].affiliations[0].raw_affiliation_string | Sikkim Manipal Institute of Technology, Sikkim Manipal University,Department of Computer Applications,Sikkim,India,737102 |
| authorships[3].institutions[0].id | https://openalex.org/I81433678 |
| authorships[3].institutions[0].ror | https://ror.org/010gckf65 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I81433678 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Sikkim Manipal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ranjit Panigrahi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sikkim Manipal Institute of Technology, Sikkim Manipal University,Department of Computer Applications,Sikkim,India,737102 |
| authorships[4].author.id | https://openalex.org/A5046397615 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2759-3224 |
| authorships[4].author.display_name | Akash Kumar Bhoi |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I81433678 |
| authorships[4].affiliations[0].raw_affiliation_string | Directorate of Research, Sikkim Manipal University,Gangtok,Sikkim,India,737102 |
| authorships[4].institutions[0].id | https://openalex.org/I81433678 |
| authorships[4].institutions[0].ror | https://ror.org/010gckf65 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I81433678 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Sikkim Manipal University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Akash Kumar Bhoi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Directorate of Research, Sikkim Manipal University,Gangtok,Sikkim,India,737102 |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/8254253/9962810/09962954.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud Image Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11483 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9902999997138977 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Tropical and Extratropical Cyclones Research |
| related_works | https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W3167935049, https://openalex.org/W3029198973, https://openalex.org/W2952813363, https://openalex.org/W2911497689, https://openalex.org/W4360783045, https://openalex.org/W2963346891, https://openalex.org/W2770149305 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 2 |
| best_oa_location.id | doi:10.26599/bdma.2021.9020017 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210209060 |
| best_oa_location.source.issn | 2096-0654 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2096-0654 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Big Data Mining and Analytics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_name | Tsinghua University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| best_oa_location.source.host_organization_lineage_names | Tsinghua University Press |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/9962810/09962954.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Big Data Mining and Analytics |
| best_oa_location.landing_page_url | https://doi.org/10.26599/bdma.2021.9020017 |
| primary_location.id | doi:10.26599/bdma.2021.9020017 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210209060 |
| primary_location.source.issn | 2096-0654 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2096-0654 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Big Data Mining and Analytics |
| primary_location.source.host_organization | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_name | Tsinghua University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311901 |
| primary_location.source.host_organization_lineage_names | Tsinghua University Press |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/8254253/9962810/09962954.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Big Data Mining and Analytics |
| primary_location.landing_page_url | https://doi.org/10.26599/bdma.2021.9020017 |
| publication_date | 2022-11-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2144600384, https://openalex.org/W3034157079, https://openalex.org/W2132889984, https://openalex.org/W2911618850, https://openalex.org/W2931322328, https://openalex.org/W2905387508, https://openalex.org/W3003708426, https://openalex.org/W2569758175, https://openalex.org/W4206735705, https://openalex.org/W2082726419, https://openalex.org/W2021592094, https://openalex.org/W2102967934, https://openalex.org/W65019361, https://openalex.org/W2885062246, https://openalex.org/W1980986928, https://openalex.org/W2930789748, https://openalex.org/W1563697767, https://openalex.org/W2968139945, https://openalex.org/W3017315620, https://openalex.org/W2932915765, https://openalex.org/W2809381768, https://openalex.org/W2902003737, https://openalex.org/W2970455193, https://openalex.org/W2099926703, https://openalex.org/W2081038879, https://openalex.org/W2466389796, https://openalex.org/W2114102888, https://openalex.org/W3084018155, https://openalex.org/W2055586096, https://openalex.org/W2778830079, https://openalex.org/W2005120494, https://openalex.org/W2946064216, https://openalex.org/W2078770669, https://openalex.org/W2897795150, https://openalex.org/W2995394700, https://openalex.org/W3035035250, https://openalex.org/W2951045917, https://openalex.org/W2268875920, https://openalex.org/W1487097365, https://openalex.org/W1514205146 |
| referenced_works_count | 40 |
| abstract_inverted_index.& | 125 |
| abstract_inverted_index.a | 1, 10, 31, 52, 71, 110 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.In | 49 |
| abstract_inverted_index.an | 87, 104 |
| abstract_inverted_index.in | 41 |
| abstract_inverted_index.is | 55, 80, 133 |
| abstract_inverted_index.of | 4, 27, 90, 113, 140 |
| abstract_inverted_index.on | 21, 30, 83 |
| abstract_inverted_index.to | 14 |
| abstract_inverted_index.94% | 151 |
| abstract_inverted_index.The | 117, 145 |
| abstract_inverted_index.and | 16, 142 |
| abstract_inverted_index.are | 120 |
| abstract_inverted_index.for | 45, 74, 96, 135 |
| abstract_inverted_index.its | 143 |
| abstract_inverted_index.the | 8, 18, 22, 25, 68, 123, 131, 155 |
| abstract_inverted_index.DCNN | 79, 156 |
| abstract_inverted_index.Data | 128 |
| abstract_inverted_index.Deep | 58 |
| abstract_inverted_index.deep | 106 |
| abstract_inverted_index.from | 122 |
| abstract_inverted_index.huge | 2, 111 |
| abstract_inverted_index.this | 50 |
| abstract_inverted_index.time | 94 |
| abstract_inverted_index.with | 86, 109, 154 |
| abstract_inverted_index.India | 141 |
| abstract_inverted_index.cloud | 77, 84, 138, 147 |
| abstract_inverted_index.earth | 23 |
| abstract_inverted_index.great | 11 |
| abstract_inverted_index.image | 148 |
| abstract_inverted_index.plays | 38 |
| abstract_inverted_index.shows | 150 |
| abstract_inverted_index.taken | 121 |
| abstract_inverted_index.using | 57, 103 |
| abstract_inverted_index.which | 66 |
| abstract_inverted_index.Neural | 60 |
| abstract_inverted_index.amount | 89 |
| abstract_inverted_index.around | 7 |
| abstract_inverted_index.basis. | 33 |
| abstract_inverted_index.change | 19 |
| abstract_inverted_index.earth, | 9 |
| abstract_inverted_index.exists | 13 |
| abstract_inverted_index.images | 29, 37, 85, 119, 139 |
| abstract_inverted_index.number | 3, 112 |
| abstract_inverted_index.remote | 42 |
| abstract_inverted_index.strong | 39 |
| abstract_inverted_index.(DCNN), | 62 |
| abstract_inverted_index.Centre, | 130 |
| abstract_inverted_index.Network | 61 |
| abstract_inverted_index.dataset | 115 |
| abstract_inverted_index.extract | 67 |
| abstract_inverted_index.images, | 98 |
| abstract_inverted_index.images. | 78 |
| abstract_inverted_index.layers, | 65 |
| abstract_inverted_index.network | 108 |
| abstract_inverted_index.observe | 15 |
| abstract_inverted_index.process | 73 |
| abstract_inverted_index.revolve | 6 |
| abstract_inverted_index.sensing | 43 |
| abstract_inverted_index.testing | 97 |
| abstract_inverted_index.through | 24, 70 |
| abstract_inverted_index.trained | 81 |
| abstract_inverted_index.whereas | 99 |
| abstract_inverted_index.Archival | 129 |
| abstract_inverted_index.Delivery | 93 |
| abstract_inverted_index.accuracy | 101, 153 |
| abstract_inverted_index.analysis | 26 |
| abstract_inverted_index.approach | 54 |
| abstract_inverted_index.article, | 51 |
| abstract_inverted_index.availing | 136 |
| abstract_inverted_index.features | 69 |
| abstract_inverted_index.numerous | 64 |
| abstract_inverted_index.proposed | 56, 146 |
| abstract_inverted_index.training | 114 |
| abstract_inverted_index.tropical | 47 |
| abstract_inverted_index.Satellite | 127 |
| abstract_inverted_index.accuracy. | 92 |
| abstract_inverted_index.cyclones. | 48 |
| abstract_inverted_index.decreases | 95 |
| abstract_inverted_index.determine | 17 |
| abstract_inverted_index.increases | 102 |
| abstract_inverted_index.phenomena | 20 |
| abstract_inverted_index.real-time | 32 |
| abstract_inverted_index.satellite | 28, 36, 76, 118, 137 |
| abstract_inverted_index.Therefore, | 34 |
| abstract_inverted_index.assistance | 40 |
| abstract_inverted_index.comprising | 63 |
| abstract_inverted_index.framework. | 157 |
| abstract_inverted_index.impressive | 88 |
| abstract_inverted_index.instances. | 116 |
| abstract_inverted_index.predicting | 46 |
| abstract_inverted_index.prediction | 91, 100, 152 |
| abstract_inverted_index.satellites | 5 |
| abstract_inverted_index.appropriate | 105 |
| abstract_inverted_index.classifying | 35, 75 |
| abstract_inverted_index.communities | 44 |
| abstract_inverted_index.marvelously | 82 |
| abstract_inverted_index.probability | 12 |
| abstract_inverted_index.responsible | 134 |
| abstract_inverted_index.downsampling | 72 |
| abstract_inverted_index.organization | 132 |
| abstract_inverted_index.Convolutional | 59 |
| abstract_inverted_index.Oceanographic | 126 |
| abstract_inverted_index.convolutional | 107 |
| abstract_inverted_index.subcontinent. | 144 |
| abstract_inverted_index.Meteorological | 124 |
| abstract_inverted_index.classification | 53, 149 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.5799999833106995 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile.value | 0.92991986 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |