Deep convolutional neural networks and data approximation using the fractional Fourier transform Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.06757
In the first part of this paper, we define a deep convolutional neural network connected with the fractional Fourier transform (FrFT) using the $θ$-translation operator, the translation operator associated with the FrFT. Subsequently, we study $θ$-translation invariance properties of this network. Unlike the classical case, these networks are not translation invariant. \par In the second part, we study data approximation problems using the FrFT. More precisely, given a data set $\fl=\{f_1,\cdots, f_m\}\subset L^2(\R^n)$, we obtain $Φ=\{ϕ_1,\cdots,ϕ_\ell\}$ such that \[ V_θ(Φ)=\argmin\sum_{j=1}^m \|f_j-P_{V}f_j\|^2, \] where the minimum is taken over all $θ$-shift invariant spaces generated by at most $\ell$ elements. Moreover, we prove the existence of a space of bandlimited functions in the FrFT domain which is ``closest" to $\fl$ in the above sense.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.06757
- https://arxiv.org/pdf/2408.06757
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402427134
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402427134Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.06757Digital Object Identifier
- Title
-
Deep convolutional neural networks and data approximation using the fractional Fourier transformWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-13Full publication date if available
- Authors
-
Md. Haider Ali Biswas, Peter Massopust, R. RamakrishnanList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.06757Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.06757Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.06757Direct OA link when available
- Concepts
-
Convolutional neural network, Fourier transform, Fractional Fourier transform, Computer science, Discrete Fourier transform (general), Artificial intelligence, Algorithm, Pattern recognition (psychology), Mathematics, Fourier analysis, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402427134 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.06757 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.06757 |
| ids.openalex | https://openalex.org/W4402427134 |
| fwci | |
| type | preprint |
| title | Deep convolutional neural networks and data approximation using the fractional Fourier transform |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9754999876022339 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| topics[1].id | https://openalex.org/T10662 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9013000130653381 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2211 |
| topics[1].subfield.display_name | Mechanics of Materials |
| topics[1].display_name | Ultrasonics and Acoustic Wave Propagation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7302840352058411 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C102519508 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6199897527694702 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6520159 |
| concepts[1].display_name | Fourier transform |
| concepts[2].id | https://openalex.org/C76563020 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6024218201637268 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4817582 |
| concepts[2].display_name | Fractional Fourier transform |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5226150155067444 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C57733114 |
| concepts[4].level | 5 |
| concepts[4].score | 0.4753310978412628 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1006032 |
| concepts[4].display_name | Discrete Fourier transform (general) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4590318500995636 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3416719436645508 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.3211207985877991 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.28058886528015137 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C203024314 |
| concepts[9].level | 3 |
| concepts[9].score | 0.22311708331108093 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1365258 |
| concepts[9].display_name | Fourier analysis |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13398617506027222 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7302840352058411 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/fourier-transform |
| keywords[1].score | 0.6199897527694702 |
| keywords[1].display_name | Fourier transform |
| keywords[2].id | https://openalex.org/keywords/fractional-fourier-transform |
| keywords[2].score | 0.6024218201637268 |
| keywords[2].display_name | Fractional Fourier transform |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5226150155067444 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/discrete-fourier-transform |
| keywords[4].score | 0.4753310978412628 |
| keywords[4].display_name | Discrete Fourier transform (general) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4590318500995636 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.3416719436645508 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.3211207985877991 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.28058886528015137 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/fourier-analysis |
| keywords[9].score | 0.22311708331108093 |
| keywords[9].display_name | Fourier analysis |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.13398617506027222 |
| keywords[10].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.06757 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.06757 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.06757 |
| locations[1].id | doi:10.48550/arxiv.2408.06757 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.06757 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5052329585 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3541-5639 |
| authorships[0].author.display_name | Md. Haider Ali Biswas |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Biswas, M. H. A. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5077984951 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5466-1336 |
| authorships[1].author.display_name | Peter Massopust |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Massopust, P. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030904134 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | R. Ramakrishnan |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ramakrishnan, R. |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.06757 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep convolutional neural networks and data approximation using the fractional Fourier transform |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9754999876022339 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| related_works | https://openalex.org/W2118155316, https://openalex.org/W2382218334, https://openalex.org/W2090697566, https://openalex.org/W2116983948, https://openalex.org/W4294147850, https://openalex.org/W2155549970, https://openalex.org/W3141389362, https://openalex.org/W2348706803, https://openalex.org/W2057875231, https://openalex.org/W2183119314 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.06757 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.06757 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.06757 |
| primary_location.id | pmh:oai:arXiv.org:2408.06757 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.06757 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.06757 |
| publication_date | 2024-08-13 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 67, 104 |
| abstract_inverted_index.In | 0, 52 |
| abstract_inverted_index.\[ | 78 |
| abstract_inverted_index.\] | 81 |
| abstract_inverted_index.at | 94 |
| abstract_inverted_index.by | 93 |
| abstract_inverted_index.in | 109, 118 |
| abstract_inverted_index.is | 85, 114 |
| abstract_inverted_index.of | 4, 38, 103, 106 |
| abstract_inverted_index.to | 116 |
| abstract_inverted_index.we | 7, 33, 56, 73, 99 |
| abstract_inverted_index.all | 88 |
| abstract_inverted_index.are | 47 |
| abstract_inverted_index.not | 48 |
| abstract_inverted_index.set | 69 |
| abstract_inverted_index.the | 1, 16, 22, 25, 30, 42, 53, 62, 83, 101, 110, 119 |
| abstract_inverted_index.FrFT | 111 |
| abstract_inverted_index.More | 64 |
| abstract_inverted_index.\par | 51 |
| abstract_inverted_index.data | 58, 68 |
| abstract_inverted_index.deep | 10 |
| abstract_inverted_index.most | 95 |
| abstract_inverted_index.over | 87 |
| abstract_inverted_index.part | 3 |
| abstract_inverted_index.such | 76 |
| abstract_inverted_index.that | 77 |
| abstract_inverted_index.this | 5, 39 |
| abstract_inverted_index.with | 15, 29 |
| abstract_inverted_index.$\fl$ | 117 |
| abstract_inverted_index.FrFT. | 31, 63 |
| abstract_inverted_index.above | 120 |
| abstract_inverted_index.case, | 44 |
| abstract_inverted_index.first | 2 |
| abstract_inverted_index.given | 66 |
| abstract_inverted_index.part, | 55 |
| abstract_inverted_index.prove | 100 |
| abstract_inverted_index.space | 105 |
| abstract_inverted_index.study | 34, 57 |
| abstract_inverted_index.taken | 86 |
| abstract_inverted_index.these | 45 |
| abstract_inverted_index.using | 21, 61 |
| abstract_inverted_index.where | 82 |
| abstract_inverted_index.which | 113 |
| abstract_inverted_index.$\ell$ | 96 |
| abstract_inverted_index.(FrFT) | 20 |
| abstract_inverted_index.Unlike | 41 |
| abstract_inverted_index.define | 8 |
| abstract_inverted_index.domain | 112 |
| abstract_inverted_index.neural | 12 |
| abstract_inverted_index.obtain | 74 |
| abstract_inverted_index.paper, | 6 |
| abstract_inverted_index.second | 54 |
| abstract_inverted_index.sense. | 121 |
| abstract_inverted_index.spaces | 91 |
| abstract_inverted_index.Fourier | 18 |
| abstract_inverted_index.minimum | 84 |
| abstract_inverted_index.network | 13 |
| abstract_inverted_index.network. | 40 |
| abstract_inverted_index.networks | 46 |
| abstract_inverted_index.operator | 27 |
| abstract_inverted_index.problems | 60 |
| abstract_inverted_index.Moreover, | 98 |
| abstract_inverted_index.classical | 43 |
| abstract_inverted_index.connected | 14 |
| abstract_inverted_index.elements. | 97 |
| abstract_inverted_index.existence | 102 |
| abstract_inverted_index.functions | 108 |
| abstract_inverted_index.generated | 92 |
| abstract_inverted_index.invariant | 90 |
| abstract_inverted_index.operator, | 24 |
| abstract_inverted_index.transform | 19 |
| abstract_inverted_index.$θ$-shift | 89 |
| abstract_inverted_index.``closest" | 115 |
| abstract_inverted_index.associated | 28 |
| abstract_inverted_index.fractional | 17 |
| abstract_inverted_index.invariance | 36 |
| abstract_inverted_index.invariant. | 50 |
| abstract_inverted_index.precisely, | 65 |
| abstract_inverted_index.properties | 37 |
| abstract_inverted_index.L^2(\R^n)$, | 72 |
| abstract_inverted_index.bandlimited | 107 |
| abstract_inverted_index.translation | 26, 49 |
| abstract_inverted_index.f_m\}\subset | 71 |
| abstract_inverted_index.Subsequently, | 32 |
| abstract_inverted_index.approximation | 59 |
| abstract_inverted_index.convolutional | 11 |
| abstract_inverted_index.$θ$-translation | 23, 35 |
| abstract_inverted_index.$\fl=\{f_1,\cdots, | 70 |
| abstract_inverted_index.\|f_j-P_{V}f_j\|^2, | 80 |
| abstract_inverted_index.$Φ=\{ϕ_1,\cdots,ϕ_\ell\}$ | 75 |
| abstract_inverted_index.V_θ(Φ)=\argmin\sum_{j=1}^m | 79 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |