Deep convolutional Ritz method: parametric PDE surrogates without labeled data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s10483-023-2992-6
The parametric surrogate models for partial differential equations (PDEs) are a necessary component for many applications in computational sciences, and the convolutional neural networks (CNNs) have proven to be an excellent tool to generate these surrogates when parametric fields are present. CNNs are commonly trained on labeled data based on one-to-one sets of parameter-input and PDE-output fields. Recently, residual-based deep convolutional physics-informed neural network (DCPINN) solvers for parametric PDEs have been proposed to build surrogates without the need for labeled data. These allow for the generation of surrogates without an expensive offline-phase. In this work, we present an alternative formulation termed deep convolutional Ritz method (DCRM) as a parametric PDE solver. The approach is based on the minimization of energy functionals, which lowers the order of the differential operators compared to residual-based methods. Based on studies involving the Poisson equation with a spatially parameterized source term and boundary conditions, we find that CNNs trained on labeled data outperform DCPINNs in convergence speed and generalization abilities. The surrogates generated from the DCRM, however, converge significantly faster than their DCPINN counterparts, and prove to generalize faster and better than the surrogates obtained from both CNNs trained on labeled data and DCPINNs. This hints that the DCRM could make PDE solution surrogates trained without labeled data possibly.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10483-023-2992-6
- https://link.springer.com/content/pdf/10.1007/s10483-023-2992-6.pdf
- OA Status
- hybrid
- Cited By
- 19
- References
- 79
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4382894964
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4382894964Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10483-023-2992-6Digital Object Identifier
- Title
-
Deep convolutional Ritz method: parametric PDE surrogates without labeled dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-01Full publication date if available
- Authors
-
Jan N. Fuhg, Aditya P. Karmarkar, Teeratorn Kadeethum, Hongkyu Yoon, Nikolaos BouklasList of authors in order
- Landing page
-
https://doi.org/10.1007/s10483-023-2992-6Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10483-023-2992-6.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10483-023-2992-6.pdfDirect OA link when available
- Concepts
-
Convolutional neural network, Solver, Residual, Parametric statistics, Computer science, Partial differential equation, Parameterized complexity, Convergence (economics), Algorithm, Deep learning, Generalization, Applied mathematics, Artificial intelligence, Mathematical optimization, Mathematics, Mathematical analysis, Economics, Statistics, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 10, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
79Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4382894964 |
|---|---|
| doi | https://doi.org/10.1007/s10483-023-2992-6 |
| ids.doi | https://doi.org/10.1007/s10483-023-2992-6 |
| ids.openalex | https://openalex.org/W4382894964 |
| fwci | 3.88215315 |
| type | article |
| title | Deep convolutional Ritz method: parametric PDE surrogates without labeled data |
| biblio.issue | 7 |
| biblio.volume | 44 |
| biblio.last_page | 1174 |
| biblio.first_page | 1151 |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T11263 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9904000163078308 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electromagnetic Simulation and Numerical Methods |
| topics[2].id | https://openalex.org/T10339 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Advanced Numerical Methods in Computational Mathematics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7503470182418823 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C2778770139 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6834826469421387 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1966904 |
| concepts[1].display_name | Solver |
| concepts[2].id | https://openalex.org/C155512373 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6489129662513733 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[2].display_name | Residual |
| concepts[3].id | https://openalex.org/C117251300 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6438227891921997 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1849855 |
| concepts[3].display_name | Parametric statistics |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5927257537841797 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C93779851 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5702034831047058 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q271977 |
| concepts[5].display_name | Partial differential equation |
| concepts[6].id | https://openalex.org/C165464430 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5662010312080383 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1570441 |
| concepts[6].display_name | Parameterized complexity |
| concepts[7].id | https://openalex.org/C2777303404 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5441346168518066 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[7].display_name | Convergence (economics) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5108577609062195 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46321186423301697 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C177148314 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4571435749530792 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[10].display_name | Generalization |
| concepts[11].id | https://openalex.org/C28826006 |
| concepts[11].level | 1 |
| concepts[11].score | 0.45182839035987854 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[11].display_name | Applied mathematics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4407334625720978 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C126255220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3661423325538635 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[13].display_name | Mathematical optimization |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.26687756180763245 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0808137059211731 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C105795698 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[17].display_name | Statistics |
| concepts[18].id | https://openalex.org/C50522688 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[18].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.7503470182418823 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/solver |
| keywords[1].score | 0.6834826469421387 |
| keywords[1].display_name | Solver |
| keywords[2].id | https://openalex.org/keywords/residual |
| keywords[2].score | 0.6489129662513733 |
| keywords[2].display_name | Residual |
| keywords[3].id | https://openalex.org/keywords/parametric-statistics |
| keywords[3].score | 0.6438227891921997 |
| keywords[3].display_name | Parametric statistics |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5927257537841797 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/partial-differential-equation |
| keywords[5].score | 0.5702034831047058 |
| keywords[5].display_name | Partial differential equation |
| keywords[6].id | https://openalex.org/keywords/parameterized-complexity |
| keywords[6].score | 0.5662010312080383 |
| keywords[6].display_name | Parameterized complexity |
| keywords[7].id | https://openalex.org/keywords/convergence |
| keywords[7].score | 0.5441346168518066 |
| keywords[7].display_name | Convergence (economics) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.5108577609062195 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.46321186423301697 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/generalization |
| keywords[10].score | 0.4571435749530792 |
| keywords[10].display_name | Generalization |
| keywords[11].id | https://openalex.org/keywords/applied-mathematics |
| keywords[11].score | 0.45182839035987854 |
| keywords[11].display_name | Applied mathematics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.4407334625720978 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[13].score | 0.3661423325538635 |
| keywords[13].display_name | Mathematical optimization |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.26687756180763245 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[15].score | 0.0808137059211731 |
| keywords[15].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1007/s10483-023-2992-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S144595962 |
| locations[0].source.issn | 0253-4827, 1573-2754 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0253-4827 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied Mathematics and Mechanics |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10483-023-2992-6.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Mathematics and Mechanics |
| locations[0].landing_page_url | https://doi.org/10.1007/s10483-023-2992-6 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058627053 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5986-3770 |
| authorships[0].author.display_name | Jan N. Fuhg |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[0].affiliations[0].raw_affiliation_string | Sibley School of Mechanical and Aerospace Engineering, Cornell University, New York, 14853, USA |
| authorships[0].institutions[0].id | https://openalex.org/I205783295 |
| authorships[0].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Cornell University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J. N. Fuhg |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sibley School of Mechanical and Aerospace Engineering, Cornell University, New York, 14853, USA |
| authorships[1].author.id | https://openalex.org/A5063883205 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6227-171X |
| authorships[1].author.display_name | Aditya P. Karmarkar |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[1].affiliations[0].raw_affiliation_string | Sibley School of Mechanical and Aerospace Engineering, Cornell University, New York, 14853, USA |
| authorships[1].institutions[0].id | https://openalex.org/I205783295 |
| authorships[1].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Cornell University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | A. Karmarkar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Sibley School of Mechanical and Aerospace Engineering, Cornell University, New York, 14853, USA |
| authorships[2].author.id | https://openalex.org/A5074522311 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6815-9179 |
| authorships[2].author.display_name | Teeratorn Kadeethum |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210104735 |
| authorships[2].affiliations[0].raw_affiliation_string | Geomechanics Department, Sandia National Laboratories, Albuquerque, 87123, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210104735 |
| authorships[2].institutions[0].ror | https://ror.org/01apwpt12 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210104735 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Sandia National Laboratories |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | T. Kadeethum |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Geomechanics Department, Sandia National Laboratories, Albuquerque, 87123, USA |
| authorships[3].author.id | https://openalex.org/A5089401974 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6719-280X |
| authorships[3].author.display_name | Hongkyu Yoon |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210104735 |
| authorships[3].affiliations[0].raw_affiliation_string | Geomechanics Department, Sandia National Laboratories, Albuquerque, 87123, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4210104735 |
| authorships[3].institutions[0].ror | https://ror.org/01apwpt12 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I198811213, https://openalex.org/I4210104735 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Sandia National Laboratories |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | H. Yoon |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Geomechanics Department, Sandia National Laboratories, Albuquerque, 87123, USA |
| authorships[4].author.id | https://openalex.org/A5063820996 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3349-5914 |
| authorships[4].author.display_name | Nikolaos Bouklas |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[4].affiliations[0].raw_affiliation_string | Sibley School of Mechanical and Aerospace Engineering, Cornell University, New York, 14853, USA |
| authorships[4].institutions[0].id | https://openalex.org/I205783295 |
| authorships[4].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Cornell University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | N. Bouklas |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Sibley School of Mechanical and Aerospace Engineering, Cornell University, New York, 14853, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10483-023-2992-6.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep convolutional Ritz method: parametric PDE surrogates without labeled data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2051058708, https://openalex.org/W154868527, https://openalex.org/W1494268238, https://openalex.org/W1983207144, https://openalex.org/W2490706771, https://openalex.org/W2480116122, https://openalex.org/W1976468483, https://openalex.org/W3214675586, https://openalex.org/W3046835365, https://openalex.org/W3011358647 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10483-023-2992-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S144595962 |
| best_oa_location.source.issn | 0253-4827, 1573-2754 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0253-4827 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied Mathematics and Mechanics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10483-023-2992-6.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Mathematics and Mechanics |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10483-023-2992-6 |
| primary_location.id | doi:10.1007/s10483-023-2992-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S144595962 |
| primary_location.source.issn | 0253-4827, 1573-2754 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0253-4827 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied Mathematics and Mechanics |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10483-023-2992-6.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Mathematics and Mechanics |
| primary_location.landing_page_url | https://doi.org/10.1007/s10483-023-2992-6 |
| publication_date | 2023-07-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1824974010, https://openalex.org/W2064590760, https://openalex.org/W3193111610, https://openalex.org/W2098233760, https://openalex.org/W2747778728, https://openalex.org/W2786232134, https://openalex.org/W278553617, https://openalex.org/W2963473801, https://openalex.org/W3149234073, https://openalex.org/W3160138438, https://openalex.org/W3199814420, https://openalex.org/W4241888870, https://openalex.org/W2112823474, https://openalex.org/W2163662580, https://openalex.org/W2772709428, https://openalex.org/W4287557786, https://openalex.org/W4287780695, https://openalex.org/W2784733489, https://openalex.org/W3167031531, https://openalex.org/W2735139999, https://openalex.org/W2896999814, https://openalex.org/W3165107655, https://openalex.org/W3020102814, https://openalex.org/W2729558485, https://openalex.org/W3062658395, https://openalex.org/W3175474995, https://openalex.org/W1974280084, https://openalex.org/W3080930191, https://openalex.org/W4298392474, https://openalex.org/W2158985775, https://openalex.org/W2899283552, https://openalex.org/W3033526262, https://openalex.org/W3175293984, https://openalex.org/W6929334658, https://openalex.org/W2979786244, https://openalex.org/W3201666041, https://openalex.org/W2908541468, https://openalex.org/W3111914315, https://openalex.org/W3173549089, https://openalex.org/W2760972773, https://openalex.org/W2993505246, https://openalex.org/W4220826888, https://openalex.org/W2998847955, https://openalex.org/W3213846592, https://openalex.org/W1981276685, https://openalex.org/W3205073660, https://openalex.org/W2040941018, https://openalex.org/W2047049848, https://openalex.org/W2019561889, https://openalex.org/W1596652901, https://openalex.org/W2501675871, https://openalex.org/W2963021451, https://openalex.org/W2962949934, https://openalex.org/W1904365287, https://openalex.org/W1836465849, https://openalex.org/W4300424419, https://openalex.org/W2963881378, https://openalex.org/W2100495367, https://openalex.org/W4283763183, https://openalex.org/W2964121744, https://openalex.org/W4244063180, https://openalex.org/W4225833956, https://openalex.org/W84759582, https://openalex.org/W1965018517, https://openalex.org/W4295312788, https://openalex.org/W4310153797, https://openalex.org/W2520164769, https://openalex.org/W2325571527, https://openalex.org/W4288640877, https://openalex.org/W3102049510, https://openalex.org/W2559655401, https://openalex.org/W601713258, https://openalex.org/W2795744704, https://openalex.org/W2317915144, https://openalex.org/W2042970394, https://openalex.org/W2073732659, https://openalex.org/W599916913, https://openalex.org/W4230452299, https://openalex.org/W2990138404 |
| referenced_works_count | 79 |
| abstract_inverted_index.a | 11, 108, 142 |
| abstract_inverted_index.In | 93 |
| abstract_inverted_index.an | 30, 90, 98 |
| abstract_inverted_index.as | 107 |
| abstract_inverted_index.be | 29 |
| abstract_inverted_index.in | 17, 160 |
| abstract_inverted_index.is | 114 |
| abstract_inverted_index.of | 53, 87, 119, 126 |
| abstract_inverted_index.on | 46, 50, 116, 135, 155, 195 |
| abstract_inverted_index.to | 28, 33, 73, 131, 182 |
| abstract_inverted_index.we | 96, 150 |
| abstract_inverted_index.PDE | 110, 207 |
| abstract_inverted_index.The | 1, 112, 166 |
| abstract_inverted_index.and | 20, 55, 147, 163, 180, 185, 198 |
| abstract_inverted_index.are | 10, 40, 43 |
| abstract_inverted_index.for | 5, 14, 67, 79, 84 |
| abstract_inverted_index.the | 21, 77, 85, 117, 124, 127, 138, 170, 188, 203 |
| abstract_inverted_index.CNNs | 42, 153, 193 |
| abstract_inverted_index.DCRM | 204 |
| abstract_inverted_index.PDEs | 69 |
| abstract_inverted_index.Ritz | 104 |
| abstract_inverted_index.This | 200 |
| abstract_inverted_index.been | 71 |
| abstract_inverted_index.both | 192 |
| abstract_inverted_index.data | 48, 157, 197, 213 |
| abstract_inverted_index.deep | 60, 102 |
| abstract_inverted_index.find | 151 |
| abstract_inverted_index.from | 169, 191 |
| abstract_inverted_index.have | 26, 70 |
| abstract_inverted_index.make | 206 |
| abstract_inverted_index.many | 15 |
| abstract_inverted_index.need | 78 |
| abstract_inverted_index.sets | 52 |
| abstract_inverted_index.term | 146 |
| abstract_inverted_index.than | 176, 187 |
| abstract_inverted_index.that | 152, 202 |
| abstract_inverted_index.this | 94 |
| abstract_inverted_index.tool | 32 |
| abstract_inverted_index.when | 37 |
| abstract_inverted_index.with | 141 |
| abstract_inverted_index.Based | 134 |
| abstract_inverted_index.DCRM, | 171 |
| abstract_inverted_index.These | 82 |
| abstract_inverted_index.allow | 83 |
| abstract_inverted_index.based | 49, 115 |
| abstract_inverted_index.build | 74 |
| abstract_inverted_index.could | 205 |
| abstract_inverted_index.data. | 81 |
| abstract_inverted_index.hints | 201 |
| abstract_inverted_index.order | 125 |
| abstract_inverted_index.prove | 181 |
| abstract_inverted_index.speed | 162 |
| abstract_inverted_index.their | 177 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.which | 122 |
| abstract_inverted_index.work, | 95 |
| abstract_inverted_index.(CNNs) | 25 |
| abstract_inverted_index.(DCRM) | 106 |
| abstract_inverted_index.(PDEs) | 9 |
| abstract_inverted_index.DCPINN | 178 |
| abstract_inverted_index.better | 186 |
| abstract_inverted_index.energy | 120 |
| abstract_inverted_index.faster | 175, 184 |
| abstract_inverted_index.fields | 39 |
| abstract_inverted_index.lowers | 123 |
| abstract_inverted_index.method | 105 |
| abstract_inverted_index.models | 4 |
| abstract_inverted_index.neural | 23, 63 |
| abstract_inverted_index.proven | 27 |
| abstract_inverted_index.source | 145 |
| abstract_inverted_index.termed | 101 |
| abstract_inverted_index.DCPINNs | 159 |
| abstract_inverted_index.Poisson | 139 |
| abstract_inverted_index.fields. | 57 |
| abstract_inverted_index.labeled | 47, 80, 156, 196, 212 |
| abstract_inverted_index.network | 64 |
| abstract_inverted_index.partial | 6 |
| abstract_inverted_index.present | 97 |
| abstract_inverted_index.solver. | 111 |
| abstract_inverted_index.solvers | 66 |
| abstract_inverted_index.studies | 136 |
| abstract_inverted_index.trained | 45, 154, 194, 210 |
| abstract_inverted_index.without | 76, 89, 211 |
| abstract_inverted_index.(DCPINN) | 65 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.DCPINNs. | 199 |
| abstract_inverted_index.approach | 113 |
| abstract_inverted_index.boundary | 148 |
| abstract_inverted_index.commonly | 44 |
| abstract_inverted_index.compared | 130 |
| abstract_inverted_index.converge | 173 |
| abstract_inverted_index.equation | 140 |
| abstract_inverted_index.generate | 34 |
| abstract_inverted_index.however, | 172 |
| abstract_inverted_index.methods. | 133 |
| abstract_inverted_index.networks | 24 |
| abstract_inverted_index.obtained | 190 |
| abstract_inverted_index.present. | 41 |
| abstract_inverted_index.proposed | 72 |
| abstract_inverted_index.solution | 208 |
| abstract_inverted_index.Recently, | 58 |
| abstract_inverted_index.component | 13 |
| abstract_inverted_index.equations | 8 |
| abstract_inverted_index.excellent | 31 |
| abstract_inverted_index.expensive | 91 |
| abstract_inverted_index.generated | 168 |
| abstract_inverted_index.involving | 137 |
| abstract_inverted_index.necessary | 12 |
| abstract_inverted_index.operators | 129 |
| abstract_inverted_index.possibly. | 214 |
| abstract_inverted_index.sciences, | 19 |
| abstract_inverted_index.spatially | 143 |
| abstract_inverted_index.surrogate | 3 |
| abstract_inverted_index.PDE-output | 56 |
| abstract_inverted_index.abilities. | 165 |
| abstract_inverted_index.generalize | 183 |
| abstract_inverted_index.generation | 86 |
| abstract_inverted_index.one-to-one | 51 |
| abstract_inverted_index.outperform | 158 |
| abstract_inverted_index.parametric | 2, 38, 68, 109 |
| abstract_inverted_index.surrogates | 36, 75, 88, 167, 189, 209 |
| abstract_inverted_index.alternative | 99 |
| abstract_inverted_index.conditions, | 149 |
| abstract_inverted_index.convergence | 161 |
| abstract_inverted_index.formulation | 100 |
| abstract_inverted_index.applications | 16 |
| abstract_inverted_index.differential | 7, 128 |
| abstract_inverted_index.functionals, | 121 |
| abstract_inverted_index.minimization | 118 |
| abstract_inverted_index.computational | 18 |
| abstract_inverted_index.convolutional | 22, 61, 103 |
| abstract_inverted_index.counterparts, | 179 |
| abstract_inverted_index.parameterized | 144 |
| abstract_inverted_index.significantly | 174 |
| abstract_inverted_index.generalization | 164 |
| abstract_inverted_index.offline-phase. | 92 |
| abstract_inverted_index.residual-based | 59, 132 |
| abstract_inverted_index.parameter-input | 54 |
| abstract_inverted_index.physics-informed | 62 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.8899999856948853 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.93145544 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |