Deep Double-Side Learning Ensemble Model for Few-Shot Parkinson Speech Recognition Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2006.11593
Diagnosis and therapeutic effect assessment of Parkinson disease based on voice data are very important,but its few-shot learning problem is challenging.Although deep learning is good at automatic feature extraction, it suffers from few-shot learning problem. Therefore, the general effective method is first conduct feature extraction based on prior knowledge, and then carry out feature reduction for subsequent classification. However, there are two major problems: 1) Structural information among speech features has not been mined and new features of higher quality have not been reconstructed. 2) Structural information between data samples has not been mined and new samples with higher quality have not been reconstructed. To solve these two problems, based on the existing Parkinson speech feature data set, a deep double-side learning ensemble model is designed in this paper that can reconstruct speech features and samples deeply and simultaneously. As to feature reconstruction, an embedded deep stacked group sparse auto-encoder is designed in this paper to conduct nonlinear feature transformation, so as to acquire new high-level deep features, and then the deep features are fused with original speech features by L1 regularization feature selection method. As to speech sample reconstruction, a deep sample learning algorithm is designed in this paper based on iterative mean clustering to conduct samples transformation, so as to obtain new high-level deep samples. Finally, the bagging ensemble learning mode is adopted to fuse the deep feature learning algorithm and the deep samples learning algorithm together, thereby constructing a deep double-side learning ensemble model. At the end of this paper, two representative speech datasets of Parkinson's disease were used for verification. The experimental results show that the proposed algorithm are effective.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2006.11593
- https://arxiv.org/pdf/2006.11593
- OA Status
- green
- Cited By
- 2
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3036892161
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3036892161Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2006.11593Digital Object Identifier
- Title
-
Deep Double-Side Learning Ensemble Model for Few-Shot Parkinson Speech RecognitionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-20Full publication date if available
- Authors
-
Yongming Li, Lang Zhou, Lingyun Qin, Yuwei Zeng, Yuchuan Liu, Yan Lei, Pin Wang, Fan LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2006.11593Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2006.11593Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2006.11593Direct OA link when available
- Concepts
-
Artificial intelligence, Computer science, Deep learning, Feature extraction, Pattern recognition (psychology), Ensemble learning, Feature learning, Feature (linguistics), Cluster analysis, Feature selection, Machine learning, Speech recognition, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3036892161 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2006.11593 |
| ids.doi | https://doi.org/10.48550/arxiv.2006.11593 |
| ids.mag | 3036892161 |
| ids.openalex | https://openalex.org/W3036892161 |
| fwci | |
| type | preprint |
| title | Deep Double-Side Learning Ensemble Model for Few-Shot Parkinson Speech Recognition |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10863 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2737 |
| topics[0].subfield.display_name | Physiology |
| topics[0].display_name | Voice and Speech Disorders |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9921000003814697 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T10201 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9883000254631042 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7502918243408203 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7467728853225708 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6778475046157837 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6253290772438049 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5948983430862427 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C45942800 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5569822788238525 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[5].display_name | Ensemble learning |
| concepts[6].id | https://openalex.org/C59404180 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5382250547409058 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[6].display_name | Feature learning |
| concepts[7].id | https://openalex.org/C2776401178 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5008049011230469 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[7].display_name | Feature (linguistics) |
| concepts[8].id | https://openalex.org/C73555534 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4294389486312866 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[8].display_name | Cluster analysis |
| concepts[9].id | https://openalex.org/C148483581 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41279760003089905 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[9].display_name | Feature selection |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37596508860588074 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C28490314 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36408352851867676 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[11].display_name | Speech recognition |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.7502918243408203 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7467728853225708 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6778475046157837 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.6253290772438049 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5948983430862427 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/ensemble-learning |
| keywords[5].score | 0.5569822788238525 |
| keywords[5].display_name | Ensemble learning |
| keywords[6].id | https://openalex.org/keywords/feature-learning |
| keywords[6].score | 0.5382250547409058 |
| keywords[6].display_name | Feature learning |
| keywords[7].id | https://openalex.org/keywords/feature |
| keywords[7].score | 0.5008049011230469 |
| keywords[7].display_name | Feature (linguistics) |
| keywords[8].id | https://openalex.org/keywords/cluster-analysis |
| keywords[8].score | 0.4294389486312866 |
| keywords[8].display_name | Cluster analysis |
| keywords[9].id | https://openalex.org/keywords/feature-selection |
| keywords[9].score | 0.41279760003089905 |
| keywords[9].display_name | Feature selection |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.37596508860588074 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/speech-recognition |
| keywords[11].score | 0.36408352851867676 |
| keywords[11].display_name | Speech recognition |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2006.11593 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2006.11593 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2006.11593 |
| locations[1].id | doi:10.48550/arxiv.2006.11593 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2006.11593 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5106920582 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7542-4356 |
| authorships[0].author.display_name | Yongming Li |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongming Li |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101083750 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lang Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lang Zhou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5079282171 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Lingyun Qin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lingyun Qin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068116051 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4022-3634 |
| authorships[3].author.display_name | Yuwei Zeng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuwei Zeng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5051377664 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3010-7653 |
| authorships[4].author.display_name | Yuchuan Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yuchuan Liu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100639534 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4504-6806 |
| authorships[5].author.display_name | Yan Lei |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yan Lei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5044924773 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Pin Wang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Pin Wang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100373563 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2807-5720 |
| authorships[7].author.display_name | Fan Li |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Fan Li |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2006.11593 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Deep Double-Side Learning Ensemble Model for Few-Shot Parkinson Speech Recognition |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10863 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2737 |
| primary_topic.subfield.display_name | Physiology |
| primary_topic.display_name | Voice and Speech Disorders |
| related_works | https://openalex.org/W4375867731, https://openalex.org/W2611989081, https://openalex.org/W4230611425, https://openalex.org/W3124943098, https://openalex.org/W4308112567, https://openalex.org/W3162132941, https://openalex.org/W3128189270, https://openalex.org/W3048601286, https://openalex.org/W2965925734, https://openalex.org/W4309346246 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2006.11593 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2006.11593 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2006.11593 |
| primary_location.id | pmh:oai:arXiv.org:2006.11593 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2006.11593 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2006.11593 |
| publication_date | 2020-06-20 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2311080055, https://openalex.org/W2074578935, https://openalex.org/W2084627109, https://openalex.org/W2980090549, https://openalex.org/W2154029067, https://openalex.org/W2050357074, https://openalex.org/W2883293408, https://openalex.org/W2765885286, https://openalex.org/W1979205968, https://openalex.org/W2554665268, https://openalex.org/W2933331543, https://openalex.org/W2788130861, https://openalex.org/W1964641208, https://openalex.org/W2159294452, https://openalex.org/W2148394752, https://openalex.org/W2240632480, https://openalex.org/W2339549526, https://openalex.org/W2955846796, https://openalex.org/W2548440762, https://openalex.org/W2075987325, https://openalex.org/W2885936871, https://openalex.org/W2767107458, https://openalex.org/W2598766133, https://openalex.org/W2607902515, https://openalex.org/W2078892792, https://openalex.org/W2544106530, https://openalex.org/W2402137650 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 118, 190, 241 |
| abstract_inverted_index.1) | 64 |
| abstract_inverted_index.2) | 84 |
| abstract_inverted_index.As | 139, 185 |
| abstract_inverted_index.At | 247 |
| abstract_inverted_index.L1 | 180 |
| abstract_inverted_index.To | 104 |
| abstract_inverted_index.an | 143 |
| abstract_inverted_index.as | 161, 210 |
| abstract_inverted_index.at | 25 |
| abstract_inverted_index.by | 179 |
| abstract_inverted_index.in | 126, 152, 197 |
| abstract_inverted_index.is | 19, 23, 40, 124, 150, 195, 223 |
| abstract_inverted_index.it | 29 |
| abstract_inverted_index.of | 5, 77, 250, 257 |
| abstract_inverted_index.on | 9, 46, 110, 201 |
| abstract_inverted_index.so | 160, 209 |
| abstract_inverted_index.to | 140, 155, 162, 186, 205, 211, 225 |
| abstract_inverted_index.The | 264 |
| abstract_inverted_index.and | 1, 49, 74, 94, 134, 137, 168, 232 |
| abstract_inverted_index.are | 12, 60, 173, 272 |
| abstract_inverted_index.can | 130 |
| abstract_inverted_index.end | 249 |
| abstract_inverted_index.for | 55, 262 |
| abstract_inverted_index.has | 70, 90 |
| abstract_inverted_index.its | 15 |
| abstract_inverted_index.new | 75, 95, 164, 213 |
| abstract_inverted_index.not | 71, 81, 91, 101 |
| abstract_inverted_index.out | 52 |
| abstract_inverted_index.the | 36, 111, 170, 218, 227, 233, 248, 269 |
| abstract_inverted_index.two | 61, 107, 253 |
| abstract_inverted_index.been | 72, 82, 92, 102 |
| abstract_inverted_index.data | 11, 88, 116 |
| abstract_inverted_index.deep | 21, 119, 145, 166, 171, 191, 215, 228, 234, 242 |
| abstract_inverted_index.from | 31 |
| abstract_inverted_index.fuse | 226 |
| abstract_inverted_index.good | 24 |
| abstract_inverted_index.have | 80, 100 |
| abstract_inverted_index.mean | 203 |
| abstract_inverted_index.mode | 222 |
| abstract_inverted_index.set, | 117 |
| abstract_inverted_index.show | 267 |
| abstract_inverted_index.that | 129, 268 |
| abstract_inverted_index.then | 50, 169 |
| abstract_inverted_index.this | 127, 153, 198, 251 |
| abstract_inverted_index.used | 261 |
| abstract_inverted_index.very | 13 |
| abstract_inverted_index.were | 260 |
| abstract_inverted_index.with | 97, 175 |
| abstract_inverted_index.among | 67 |
| abstract_inverted_index.based | 8, 45, 109, 200 |
| abstract_inverted_index.carry | 51 |
| abstract_inverted_index.first | 41 |
| abstract_inverted_index.fused | 174 |
| abstract_inverted_index.group | 147 |
| abstract_inverted_index.major | 62 |
| abstract_inverted_index.mined | 73, 93 |
| abstract_inverted_index.model | 123 |
| abstract_inverted_index.paper | 128, 154, 199 |
| abstract_inverted_index.prior | 47 |
| abstract_inverted_index.solve | 105 |
| abstract_inverted_index.there | 59 |
| abstract_inverted_index.these | 106 |
| abstract_inverted_index.voice | 10 |
| abstract_inverted_index.deeply | 136 |
| abstract_inverted_index.effect | 3 |
| abstract_inverted_index.higher | 78, 98 |
| abstract_inverted_index.method | 39 |
| abstract_inverted_index.model. | 246 |
| abstract_inverted_index.obtain | 212 |
| abstract_inverted_index.paper, | 252 |
| abstract_inverted_index.sample | 188, 192 |
| abstract_inverted_index.sparse | 148 |
| abstract_inverted_index.speech | 68, 114, 132, 177, 187, 255 |
| abstract_inverted_index.acquire | 163 |
| abstract_inverted_index.adopted | 224 |
| abstract_inverted_index.bagging | 219 |
| abstract_inverted_index.between | 87 |
| abstract_inverted_index.conduct | 42, 156, 206 |
| abstract_inverted_index.disease | 7, 259 |
| abstract_inverted_index.feature | 27, 43, 53, 115, 141, 158, 182, 229 |
| abstract_inverted_index.general | 37 |
| abstract_inverted_index.method. | 184 |
| abstract_inverted_index.problem | 18 |
| abstract_inverted_index.quality | 79, 99 |
| abstract_inverted_index.results | 266 |
| abstract_inverted_index.samples | 89, 96, 135, 207, 235 |
| abstract_inverted_index.stacked | 146 |
| abstract_inverted_index.suffers | 30 |
| abstract_inverted_index.thereby | 239 |
| abstract_inverted_index.Finally, | 217 |
| abstract_inverted_index.However, | 58 |
| abstract_inverted_index.datasets | 256 |
| abstract_inverted_index.designed | 125, 151, 196 |
| abstract_inverted_index.embedded | 144 |
| abstract_inverted_index.ensemble | 122, 220, 245 |
| abstract_inverted_index.existing | 112 |
| abstract_inverted_index.features | 69, 76, 133, 172, 178 |
| abstract_inverted_index.few-shot | 16, 32 |
| abstract_inverted_index.learning | 17, 22, 33, 121, 193, 221, 230, 236, 244 |
| abstract_inverted_index.original | 176 |
| abstract_inverted_index.problem. | 34 |
| abstract_inverted_index.proposed | 270 |
| abstract_inverted_index.samples. | 216 |
| abstract_inverted_index.Diagnosis | 0 |
| abstract_inverted_index.Parkinson | 6, 113 |
| abstract_inverted_index.algorithm | 194, 231, 237, 271 |
| abstract_inverted_index.automatic | 26 |
| abstract_inverted_index.effective | 38 |
| abstract_inverted_index.features, | 167 |
| abstract_inverted_index.iterative | 202 |
| abstract_inverted_index.nonlinear | 157 |
| abstract_inverted_index.problems, | 108 |
| abstract_inverted_index.problems: | 63 |
| abstract_inverted_index.reduction | 54 |
| abstract_inverted_index.selection | 183 |
| abstract_inverted_index.together, | 238 |
| abstract_inverted_index.Structural | 65, 85 |
| abstract_inverted_index.Therefore, | 35 |
| abstract_inverted_index.assessment | 4 |
| abstract_inverted_index.clustering | 204 |
| abstract_inverted_index.effective. | 273 |
| abstract_inverted_index.extraction | 44 |
| abstract_inverted_index.high-level | 165, 214 |
| abstract_inverted_index.knowledge, | 48 |
| abstract_inverted_index.subsequent | 56 |
| abstract_inverted_index.Parkinson's | 258 |
| abstract_inverted_index.double-side | 120, 243 |
| abstract_inverted_index.extraction, | 28 |
| abstract_inverted_index.information | 66, 86 |
| abstract_inverted_index.reconstruct | 131 |
| abstract_inverted_index.therapeutic | 2 |
| abstract_inverted_index.auto-encoder | 149 |
| abstract_inverted_index.constructing | 240 |
| abstract_inverted_index.experimental | 265 |
| abstract_inverted_index.important,but | 14 |
| abstract_inverted_index.verification. | 263 |
| abstract_inverted_index.reconstructed. | 83, 103 |
| abstract_inverted_index.regularization | 181 |
| abstract_inverted_index.representative | 254 |
| abstract_inverted_index.classification. | 57 |
| abstract_inverted_index.reconstruction, | 142, 189 |
| abstract_inverted_index.simultaneously. | 138 |
| abstract_inverted_index.transformation, | 159, 208 |
| abstract_inverted_index.challenging.Although | 20 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |